18 Canonical Form, Fundamental Matrix

Recall from last time, we had the canonical form of a transition matrix P :

$$
P=\left[\begin{array}{c|c}
R & S \\
\hline 0 & Q
\end{array}\right]
$$

Where the left/upper sections correspond to recurrent states, and the right/lower sections correspond to transitive states.

Submatrix S will have at least one strictly positive entry (if there is no strictly positive entry, then all transitive classes go to other transitive classes, but then there must be a cycle so the classes would not be separate).

Thus, there must be a column in Q whose sum is strictly less than 1 , meaning Q is not stochastic.
With this condition, we can show that $\lim _{k \rightarrow \infty} Q^{k}=0$ matrix.
This means that in the long run, all transient states will eventually get stuck in a recurrent class.
Definition 18.1
The indicator random variable, denoted 1_{e}, of event e is

$$
1_{e}= \begin{cases}1 & \text { event } e \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

The expected value of an indicator random variable is $E\left(1_{e}\right)=0 \operatorname{Pr}\left(1_{e}=0\right)+1 \operatorname{Pr}\left(1_{e}=1\right)=P$ (event occurs).
Let $v_{i j}$ be the number of visits to transient state i, given that we start in transient state j, before reaching a recurrent class.

Define

$$
1_{e}(k)= \begin{cases}1 & \text { if we visit state } i \text { on transition } k \text { when starting from } j \\ 0 & \text { otherwise }\end{cases}
$$

We want

$$
\begin{aligned}
E\left(v_{i j}\right) & =E\left(\sum_{k=0}^{\infty} 1_{e}(k)\right) \\
& =\sum_{k=0}^{\infty} E\left(1_{e}(k)\right) \\
& =\sum_{k=0}^{\infty} P(\text { visit transient state } i \text { on the } k \text { th transition if start in } j) \\
& =\sum_{k=0}^{\infty}\left(Q^{k}\right)_{i j}
\end{aligned}
$$

This means that the $i j$ th entry of $\sum_{k=0}^{\infty} Q^{k}$ is the expected number of visits to transient state i before reaching a recurrent class.

Recall for $|r|<1$,

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}=(1-r)^{-1}
$$

For matrices, if the eigenvalues satisfy $|\lambda|<1$,

$$
\sum_{k=0}^{\infty} Q^{k}=(I-Q)^{-1}
$$

Which is called the fundamental matrix of the Markov chain.

Theorem 18.2

Let i, j be transient states. If Q is the submatrix in canonical form,

1. The $i j$ th entry of $(I-Q)^{-1}$ is the expected number of visits to i before reaching a recurrent class, given we start in j.
2. The column sum of the j th column yields the expected number of transitions until reaching a recurrent class.

Example 18.3

Consider the maze

Where rooms 1 and 5 are traps.
If we begin in room 3, what is the expected number of transitions until we are trapped?

We have the transition matrix

$$
P=\left[\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 2 & 1
\end{array}\right]
$$

We wish to put this matrix into canonical form. We do this by switching states 2 and 5 .

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0
\end{array}\right]
$$

Where the columns and rows correspond to states $1,5,3,4$, and 2 respectively.
The bottom right 3×3 submatrix corresponds to Q. So,

$$
Q=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 0 \\
1 / 3 & 0 & 0
\end{array}\right]
$$

With columns and rows representing states $3,4,2$ respectively.

$$
(I-Q)^{-1}=\left[\begin{array}{lll}
3 / 2 & 3 / 4 & 3 / 4 \\
1 / 2 & 5 / 4 & 1 / 4 \\
1 / 2 & 1 / 4 & 5 / 4
\end{array}\right]
$$

From $(I-Q)^{-1}$, we find that the column sum for the column corresponding to state 3 is $\frac{5}{2}$. Thus, if we start in room 3, we expect to perform 2.5 transitions until we are trapped.

Consider the case of recurrent classes only being absorbing states.
The canonical form would be

$$
P=\left[\begin{array}{l|l}
I & S \\
\hline 0 & Q
\end{array}\right]
$$

With this form, we can do the following:

$$
\left.\begin{array}{c}
P=\left[\begin{array}{c|c}
I & S \\
\hline 0 & Q
\end{array}\right]\left[\begin{array}{c|c}
I & S \\
\hline 0 & Q
\end{array}\right]=\left[\begin{array}{c}
S+S Q \\
\hline
\end{array}\right]=Q^{2}
\end{array}\right]=P^{2} .\left[\begin{array}{c|c}
I & S \\
\hline 0 & Q
\end{array}\right]\left[\begin{array}{c}
S+S Q \\
\hline
\end{array} Q^{2}\right]=\left[\begin{array}{c}
S+S Q+S Q^{2} \\
\hline
\end{array}\right.
$$

So,

$$
\lim _{k \rightarrow \infty} P^{k}=\left[\begin{array}{l|l}
S+S Q+S Q^{2}+\cdots \\
\hline &
\end{array}\right] \Longrightarrow S+S Q+S Q^{2}+\cdots=S\left(I+Q+Q^{2}+\cdots\right)=S(I-Q)^{-1}
$$

