# 16 Communication Classes, Classification of States and Periodicity (Section 3.4)

## 16.1 Communication Classes

From last time, we had that X is a random variable on the number of transitions to go from j to i for the first time. We are interested in E(X).

### Theorem 16.1

For an irreducible Markov chain (1 communication class), if  $X_{ij}$  is the random variable on the number of transitions to first visit state *i* given that we start in state *j*, then  $E(X_{ii}) = \frac{1}{q_i}$  is the mean return time, where  $q_i$  is the *i*th entry of the stable/steady state vector.

### Example 16.2

In the previous section, we had

$$P = \begin{bmatrix} 0 & 1/4 & 0 \\ 0 & 3/4 & 1/2 \\ 1 & 0 & 1/2 \end{bmatrix}$$



We found that  $q = \begin{bmatrix} 2/14\\ 8/14\\ 2/7 \end{bmatrix}$ .

By the theorem, we expect  $\frac{1}{2/14} = 7$  to take transitions to return back to state 1, given that we start in state 1.

# 16.2 Classification of States and Periodicity (Section 3.4)

#### **Definition 16.3**

A communication class C is a **transient class** if there is a state j in C, and a state i NOT in C such that entry (i, j) in  $P^k$  is strictly positive for some positive integer k.

All states in C are **transient states**.

Otherwise, they are recurrent classes/states.

### Note 16.4

- 1. If the Markov chain is irreducible (one class), then all states must be recurrent.
- 2. Determine classes before classifying states.



Here, the communication classes are  $\{1, 3\}$ ,  $\{2\}$ , and  $\{4\}$ .

{4} is recurrent since we are always stuck in 4.

There are clearly arrows coming out of the class  $\{1, 3\}$ , so this class must be transient.

There is also an arrow coming out of  $\{2\}$ , so it is also transient.

If we only have one class, then it is irreducible and must be recurrent. Now assume there are at least 2 transient classes  $C_1$  and  $C_2$ .

Then, for some state in  $C_1$ , we can leave to some new class  $C_2$ .

Now in  $C_2$ , being transient, we must be able to transition to a different class, say  $C_3$ . Otherwise, if states in  $C_2$  transition out only to  $C_1$ , then this is a contradiction, since  $C_1$  and  $C_2$  should have ben 1 communication class.

We can generalize this:



For some class  $C_i$ , it must transition back to a previous communication class,  $C_j$ , contradicting  $C_i, C_j$  being different classes. We have proven the following:

#### Theorem 16.6

A (finite) Markov chain must have at least one recurrent class.

Example 16.7

$$P = \begin{bmatrix} 1/2 & 0 & 0 & 0\\ 0 & 1/4 & 1/3 & 1/3\\ 1/2 & 1/2 & 1/3 & 1/3\\ 0 & 1/4 & 1/3 & 1/3 \end{bmatrix}$$

Here, we can see from the square submatrix starting from the 2nd rows and columns that  $\{2, 3, 4\}$  is a class, because their entries are all positive.

We can also see from the first row of P that we can not leave the class above, so this class is recurrent.

{1} is in its own class, and because we can move to state 3, it is a transient class.

From here we could also say that  $\{2, 3, 4\}$  must be recurrent by the theorem above.