13 Exam 1 Review

1. Let A be a consumption matrix for 3 industries where (with columns and rows corresponding to Agriculture, Fish, and Forest)

$$
A=\left[\begin{array}{ccc}
0.1 & 0.3 & 0.2 \\
0.05 & 0.1 & 0.15 \\
0.2 & 0 & 0.4
\end{array}\right]
$$

(a) Which industry does agriculture depend on the most?

We look at the highest value in the first column, which corresponds to 0.2 units of forest required to produce 1 unit of agriculture.
(b) If the total output is 100 units of agriculture, 300 units of fish, and 200 units of forestry, how much was used internally?

$$
\vec{d}=(I-A) \vec{x} \Longrightarrow A \vec{x}=\vec{x}-\vec{d}
$$

We wish to find $A \vec{x}$:

$$
A\left[\begin{array}{l}
100 \\
300 \\
200
\end{array}\right]=\left[\begin{array}{c}
80 \\
65 \\
100
\end{array}\right]
$$

(c) Now suppose the open sector demand is $\vec{d}=\left[\begin{array}{l}648 \\ 216 \\ 432\end{array}\right]$. What is the total production?

We would want

$$
\vec{x}=(I-A)^{-1}\left[\begin{array}{l}
648 \\
216 \\
432
\end{array}\right]=\left[\begin{array}{c}
1125 \\
485 \\
1095
\end{array}\right]
$$

(d) Now suppose the open sector demand of agriculture decreased by 36 units. What is the new total production?

Agriculture is industry 1, so we look at column 1 of $(I-A)^{-1}=\left[\begin{array}{c}5 / 4 \\ 5 / 36 \\ 5 / 12\end{array}\right]$.

$$
\vec{x}_{\text {new }}=\left[\begin{array}{c}
1125+(-5 / 4) \cdot 36 \\
485+(-5 / 36) \cdot 36 \\
1095+(-5 / 12) \cdot 36
\end{array}\right]=\left[\begin{array}{c}
1080 \\
480 \\
1080
\end{array}\right]
$$

2. Find an affinely dependent relation for the set of vectors $\{(1,0,-2),(0,1,1),(-1,5,1),(0,5,-3)\}$ (A linearly dependent relation AND sum of coefficients is 0).

What if we added another vector \vec{v}_{5} to the set? $\left\{(1,0,-2), \cdots, \vec{v}_{5}\right\}$, with $\vec{v}_{5} \in \mathbb{R}^{3}$
We can quickly see that this set is also affinely dependent because with 5 vectors in \mathbb{R}^{3}, taking $\left\{\vec{v}_{5}-\right.$ $\left.\vec{v}_{1}, \cdots, \vec{v}_{2}-\vec{v}_{1}\right\}$ we have 4 vectors in \mathbb{R}^{3}, meaning that the set must be linearly dependent, so the original set must also be affinely dependent.

Generally, if we have $n+2$ vectors in \mathbb{R}^{n}, we know they must form an affinely dependent set.
3. If $S=\{(x, y): y=\sin x, x \in \mathbb{R}\}$, describe $\operatorname{conv}(S)$ geometrically.
$\operatorname{conv}(S)$ is the region bounded between -1 and 1 on the y axis. It is a rectangle that expands outwards on the x axis infinitely.
$\operatorname{conv}(S)$ is the set $\{(x, y):-1 \leq y \leq 1,-\infty<x<\infty\}$.
4. Suppose A is a subset of B, and B is convex. Is $\operatorname{conv}(A)$ always a subset of B ?

First note that $B=\operatorname{conv}(B)$ since B is convex.

If we have $\vec{p} \in \operatorname{conv}(A)$, it is a convex combination of the points in A.
Because A is a subset of B, then \vec{p} is a convex combination of points in B as well. Then, $\vec{p} \in \operatorname{conv}(B)$, and $\operatorname{conv}(B)=B$. So $\vec{p} \in B$, and so the statement is true.
5. Given A and B are convex sets, is the union $A \cup B$ always convex?

No. If we have two disjoint convex sets A and B, their union will obviously not be convex.
Let $A=\{(1,1)\}$, we can see A is convex. $B=\{(2,2)\}$, and B is also convex.
But $A \cup B=\{(1,1),(2,2)\} \neq \operatorname{conv}(A \cup B)$ which would be the line segment joining the two points.
6. Let $S=\{(-1,0),(2,3),(4,1)\}$. Does $(3,2)$ lie in aff (S) ? If so, where does it lie relative to the triangle formed by the 3 points?
$\vec{v}_{2}-\vec{v}_{1}=(3,3), \vec{v}_{3}-\vec{v}_{1}=(5,1)$.
$\{(3,3),(5,1)\}$ is linearly independent, so S is affinely independent. We can see that S is 3 vectors in \mathbb{R}^{2}, which means that $\operatorname{aff}(S)=\mathbb{R}^{2}$, so $(3,2)$ must be in $\operatorname{aff}(S)$.

Alternatively, one can row reduce

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
-1 & 2 & 4 & 3 \\
0 & 3 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 2
\end{array}\right]
$$

Thus the point $(3,2)$ lies on the triangle on the line segment joined by $(2,3)$ and $(4,1)$.
7. Remember for SVD that the trace is the sum of the eigenvalues, and the square of the singular values of Σ are the shared eigenvalues.

