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10 Markov Chains, Stable/Steady-State Vectors (Section 3.2)
From last time, we had that x⃗2 is the state vector after 2 transitions:

x⃗2 = P 2x⃗0 =

[
0.46
0.54

]
Where x⃗0 =

[
1
0

]
represents us starting in the W state.

x⃗2 is the first column of P 2, which is the probability of ending in W and L given that we start in W .

We use x⃗0 =

[
0
1

]
=⇒ P 2x⃗0 in the case that we start off in the loss state, which simply gives us the second

column of P 2.

Theorem 10.1
If P is the transition matrix of a Markov chain, entry ij of P k is the probability of ending in state i in k
transitions, given that you begin state j.

Example 10.2

P =

1/2 1/3 1/4
0 1/3 1/6
1/2 1/3 7/12


Where should we begin if we hope to end in state 3 after 3 transitions?

We find

P 3 =

0.35 0.35 0.34
0.12 0.14 0.14
0.53 0.51 0.52


We want the highest chance of ending in state 3 (which corresponds to the third row), and the first column
contains the highest probability, which means we should start in state 1 to maximize our chance of ending
in state 3.

We model Markov chains with a transition diagram.

In the last example, the transition diagram would look as follows:
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10.1 Stable/Steady-State Vectors and PageRank (Section 3.2)
What happens to the Markov chain in the long run?

Definition 10.3
The steady-state/stable vector of the transition matrix P is the probability vector q⃗ such that:

P q⃗ = q⃗

i.e. eigenvectors with eigenvalue 1. (Recall earlier that Px⃗0 = x⃗1)

Example 10.4
Game example: ( W L

W 0.6 0.25
L 0.4 0.75

)
= P

If we solve P q⃗ = q⃗, we have

P q⃗ − q⃗ = 0⃗

(P − I)q⃗ = 0⃗([
0.6 0.25
0.4 0.75

]
−
[
1 0
0 1

])[
q1
q2

]
=

[
0
0

]
[
−0.4 0.25
0.4 −0.25

] [
q1
q2

]
=

[
0
0

]
We see here that the matrix on the left is linearly dependent since the columns/rows are multiples of each other,
so might be infinite pairs of q1, q2 that fulfill this equation.

Thus, we need to add an extra constraint on q1 and q2: we need the probabilities to sum to 1, i.e. q1 + q2 = 1.
Note that this is similar to the idea behind a convex combination.

So, we want to solve both (P − I)q⃗ = 0⃗ AND q1 + q2 = 1.

We row reduce  1 1 1
−0.4 0.25 0
0.4 −0.25 0


Where the first row corresponds to q1 + q2 = 1. We get

=⇒

1 0 5/13
0 1 8/13
0 0 0

 q⃗ =

[
5/13
8/13

]
Note that

P q⃗ = q⃗

P (P q⃗) = P q⃗ = q⃗

P 2q⃗ = q⃗

P 1000 ≈
[
5/13 5/13
8/13 8/13

]
This is telling us that it doesn’t matter which state we begin with, the chance of ending up in state 1 or 2 is
always going to be the same.
We expect the columns to stabilize towards q⃗.

In particular, in the long run, the start state does NOT matter! Regardless of which state we start at,
the chance to end in state 1 or 2 is always the same!
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Definition 10.5
A stochastic matrix P is regular if P k has all non-zero entries for some positive integer k.

Example 10.6 [
0 1
1 0

]
= P

=⇒ P 2 =

[
1 0
0 1

]
= I =⇒ P 3 = P =

[
0 1
1 0

]
· · ·

We can see here that P k will never have all non-zero entries, so it is not regular.

In other words, a Markov chain is regular if after a certain number of transitions, there is a positive
probability to move between any two states.

Theorem 10.7
Let P be the transition matrix of a regular Markov chain with n states. Then,

1. The coluns of P k, k → ∞ stabilize to a unique vector q⃗.

2. For any initial state vector x⃗0,
lim
k→∞

P kx⃗0 = q⃗

i.e. the probability of ending in a specific state does NOT depend on the starting state.
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