10 Markov Chains, Stable/Steady-State Vectors (Section 3.2)

From last time, we had that \vec{x}_{2} is the state vector after 2 transitions:

$$
\vec{x}_{2}=P^{2} \vec{x}_{0}=\left[\begin{array}{l}
0.46 \\
0.54
\end{array}\right]
$$

Where $\vec{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ represents us starting in the W state.
\vec{x}_{2} is the first column of P^{2}, which is the probability of ending in W and L given that we start in W.
We use $\vec{x}_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \Longrightarrow P^{2} \vec{x}_{0}$ in the case that we start off in the loss state, which simply gives us the second column of P^{2}.

Theorem 10.1
If P is the transition matrix of a Markov chain, entry $i j$ of P^{k} is the probability of ending in state i in k transitions, given that you begin state j.

Example 10.2

$$
P=\left[\begin{array}{ccc}
1 / 2 & 1 / 3 & 1 / 4 \\
0 & 1 / 3 & 1 / 6 \\
1 / 2 & 1 / 3 & 7 / 12
\end{array}\right]
$$

Where should we begin if we hope to end in state 3 after 3 transitions?

We find

$$
P^{3}=\left[\begin{array}{lll}
0.35 & 0.35 & 0.34 \\
0.12 & 0.14 & 0.14 \\
0.53 & 0.51 & 0.52
\end{array}\right]
$$

We want the highest chance of ending in state 3 (which corresponds to the third row), and the first column contains the highest probability, which means we should start in state 1 to maximize our chance of ending in state 3.

We model Markov chains with a transition diagram.
In the last example, the transition diagram would look as follows:

10.1 Stable/Steady-State Vectors and PageRank (Section 3.2)

What happens to the Markov chain in the long run?
Definition 10.3
The steady-state/stable vector of the transition matrix P is the probability vector \vec{q} such that:

$$
P \vec{q}=\vec{q}
$$

i.e. eigenvectors with eigenvalue 1. (Recall earlier that $P \vec{x}_{0}=\vec{x}_{1}$)

Example 10.4

Game example:

$$
\begin{aligned}
& \\
& W \\
& L
\end{aligned}\left(\begin{array}{cc}
W & L \\
0.6 & 0.25 \\
0.4 & 0.75
\end{array}\right)=P
$$

If we solve $P \vec{q}=\vec{q}$, we have

$$
\begin{aligned}
P \vec{q}-\vec{q} & =\overrightarrow{0} \\
(P-I) \vec{q} & =\overrightarrow{0} \\
\left(\left[\begin{array}{cc}
0.6 & 0.25 \\
0.4 & 0.75
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-0.4 & 0.25 \\
0.4 & -0.25
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We see here that the matrix on the left is linearly dependent since the columns/rows are multiples of each other, so might be infinite pairs of q_{1}, q_{2} that fulfill this equation.

Thus, we need to add an extra constraint on q_{1} and q_{2} : we need the probabilities to sum to 1 , i.e. $q_{1}+q_{2}=1$. Note that this is similar to the idea behind a convex combination.

So, we want to solve both $(P-I) \vec{q}=\overrightarrow{0}$ AND $q_{1}+q_{2}=1$.
We row reduce

$$
\left[\begin{array}{cc|c}
1 & 1 & 1 \\
-0.4 & 0.25 & 0 \\
0.4 & -0.25 & 0
\end{array}\right]
$$

Where the first row corresponds to $q_{1}+q_{2}=1$. We get

$$
\Longrightarrow\left[\begin{array}{cc|c}
1 & 0 & 5 / 13 \\
0 & 1 & 8 / 13 \\
0 & 0 & 0
\end{array}\right] \quad \vec{q}=\left[\begin{array}{l}
5 / 13 \\
8 / 13
\end{array}\right]
$$

Note that

$$
\begin{array}{r}
P \vec{q}=\vec{q} \\
P(P \vec{q})=P \vec{q}=\vec{q} \\
P^{2} \vec{q}=\vec{q} \\
P^{1000} \approx\left[\begin{array}{ll}
5 / 13 & 5 / 13 \\
8 / 13 & 8 / 13
\end{array}\right]
\end{array}
$$

This is telling us that it doesn't matter which state we begin with, the chance of ending up in state 1 or 2 is always going to be the same.
We expect the columns to stabilize towards \vec{q}.
In particular, in the long run, the start state does NOT matter! Regardless of which state we start at, the chance to end in state 1 or 2 is always the same!

Definition 10.5

A stochastic matrix P is regular if P^{k} has all non-zero entries for some positive integer k.

Example 10.6

$$
\begin{gathered}
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=P} \\
\Longrightarrow P^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \Longrightarrow P^{3}=P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \ldots
\end{gathered}
$$

We can see here that P^{k} will never have all non-zero entries, so it is not regular.
In other words, a Markov chain is regular if after a certain number of transitions, there is a positive probability to move between any two states.

Theorem 10.7
Let P be the transition matrix of a regular Markov chain with n states. Then,

1. The coluns of $P^{k}, k \rightarrow \infty$ stabilize to a unique vector \vec{q}.
2. For any initial state vector \vec{x}_{0},

$$
\lim _{k \rightarrow \infty} P^{k} \vec{x}_{0}=\vec{q}
$$

i.e. the probability of ending in a specific state does NOT depend on the starting state.

