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From last time, we had that 75 is the state vector after 2 transitions:

; L [o.46
To=P’To = {0.54]

. 1 .
Where Zp = [ } represents us starting in the W state.

0
¥y is the first column of P2, which is the probability of ending in W and L given that we start in W.
We use ¥y = [ﬂ — PZ2%; in the case that we start off in the loss state, which simply gives us the second

column of P2.

Theorem 10.1
If P is the transition matrix of a Markov chain, entry ij of P* is the probability of ending in state i in k
transitions, given that you begin state j.

Example 10.2

1/2 1/3 1/4
P=|0 1/3 1/6
1/2 1/3 7/12

Where should we begin if we hope to end in state 3 after 3 transitions?

We find
0.35 0.35 0.34

P3= 1012 0.14 0.14
0.53 0.51 0.52

We want the highest chance of ending in state 3 (which corresponds to the third row), and the first column
contains the highest probability, which means we should start in state 1 to maximize our chance of ending
in state 3.

We model Markov chains with a transition diagram.

In the last example, the transition diagram would look as follows:
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10.1 Stable/Steady-State Vectors and PageRank (Section 3.2)
What happens to the Markov chain in the long run?

Definition 10.3
The steady-state/stable vector of the transition matrix P is the probability vector ¢ such that:
Pi=q
i.e. eigenvectors with eigenvalue 1. (Recall earlier that PZy = )
Example 10.4
Game example:
w L
W (06 025) p
L \04 075)
If we solve Pq = ¢, we have
P{—q=0
(P 1ng=0
06 025 |1 0 ai| |0
0.4 0.75 0 1 2| |0

—-04 025 |g| |0

04 —0.25| [g2| |0
We see here that the matrix on the left is linearly dependent since the columns/rows are multiples of each other,
so might be infinite pairs of g1, g2 that fulfill this equation.

Thus, we need to add an extra constraint on ¢; and ¢s: we need the probabilities to sum to 1, i.e. ¢ + g2 = 1.
Note that this is similar to the idea behind a convex combination.

So, we want to solve both (P — I)§=0 AND ¢, + ¢o = 1.

We row reduce

1 1 1
—-0.4 025 |0
04 —-0251]0
Where the first row corresponds to ¢; + g2 = 1. We get
1 0]5/13
= (0 1]8/13 q= Eﬁg]
0 0 0
Note that
Pi=q
P(P§) = Pi=q
P’q=q
1000 5/13 5/13
8/13 8/13

This is telling us that it doesn’t matter which state we begin with, the chance of ending up in state 1 or 2 is
always going to be the same.
We expect the columns to stabilize towards ¢.

In particular, in the long run, the start state does NOT matter! Regardless of which state we start at,
the chance to end in state 1 or 2 is always the same!
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Definition 10.5
A stochastic matrix P is regular if P* has all non-zero entries for some positive integer k.

Example 10.6
0 1
i o=

2 [1 0] _ s_p_ |0 1] .
:P_{O J—I:P—P_L O]

We can see here that P* will never have all non-zero entries, so it is not regular.

In other words, a Markov chain is regular if after a certain number of transitions, there is a positive
probability to move between any two states.

Theorem 10.7
Let P be the transition matrix of a regular Markov chain with n states. Then,

1. The coluns of P*, k — oo stabilize to a unique vector §.

2. For any initial state vector Zg,
lim P*Z, =¢q
k—oc0

i.e. the probability of ending in a specific state does NOT depend on the starting state.
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