
Lecture 8: Minimum Spanning Trees (Kruskal, Prim)

8 Minimum Spanning Trees (Kruskal, Prim)
• Minimum spanning trees

• Scheduling

• Divide and conquer

8.1 Minimum spanning tree
Given a weighted undirected graph, we want to find a spanning tree that minimizes the total weight of the
edges in the tree.

Definition 8.1
A cut is a bipartition of the vertices (V = A ∪B, A ∩B = ∅).

A cut is nontrivial if both A and B are nonempty.

An edge crosses the cut if it has one end in A and one end in B.

Lemma 8.2
Assume all edge weights are distinct. Let (A,B) be a nontrivial cut, and let e be the minimum-weight edge
crossing this cut.

Then any minimum spanning tree must contain e.

We’ll prove this by an exchange argument.

Proof. Let T ′ be a spanning tree that does not contain e = {u, v}.
Since T ′ is spanning, there is a path in T ′ from u to v.
Since e crosses the cut, there must be some edge along the path that crosses the cut, call it e′.

Construct a new spanning tree T from T ′ by deleting e′ and adding e.
This is a graph with the same vertex set and the same number of edges, so it is a spanning tree.

Since the weight of e is less than the weight of e′, this change lowers the total edge weight.

8.1.1 Kruskal’s algorithm

We add the lowest edge that doesn’t create a cycle to our spanning tree.

1



Lecture 8: Minimum Spanning Trees (Kruskal, Prim)

Theorem 8.3
Kruskal’s algorithm outputs a minimum spanning tree

Proof. Suppose the algorithm adds the edge e = {u, v} to the forest F .

Consider the cut induced by the component of u in F (one part of the partition is the component of the
forest containing u, and the other part of the partition is every other node (including v)).

Clearly e crosses this cut, and by definition it is the minimum-weight edge with this property.

So by the lemma, any minimum spanning tree must include e.

It remains to show that the algorithm outputs a spanning tree. It clearly does not create a cycle. If the
graph were not connected, the algorithm could always add some edge without creating a cycle, so the final
putput must be a tree.

8.1.2 Prim’s algorithm

Choose a root, and repeatedly add the non-tree vertex with the lowest attachment cost.

Theorem 8.4
Prim’s algorithm outputs a minimum spanning tree

Proof. Suppose the algorithm adds edge e = {u, v} to forest F .
Consider the cost induced by the component of the root (from which the algorithm builds the tree).

Clearly e crosses this cut, and by definition it is the minimum weight edge with that property.

So by the lemma, every minimum spanning tree contains e.

Clearly outputs a spanning tree. (As long as the graph is not connected, there is always some edge that
the algorithm can choose to include)

8.1.3 Implementations

• Prim: keep a priority queue O(m log n)

• Kruskal: union-find data structure O(m log n)

2


	Minimum Spanning Trees (Kruskal, Prim)
	Minimum spanning tree
	Kruskal's algorithm
	Prim's algorithm
	Implementations



