## 6 Connectivity in Digraphs, DFS, Topological Sorting

### 6.1 Continuation of Proof from Lecture 5

## Theorem 6.1

A connected graph with BFS tree $T$ is bipartite if and only if there is no non-tree edge joining vertices in the same layer of $T$.

Proof. $(\Longleftarrow)$ Consider the bipartition $A=L_{0} \cup L_{2} \cup \cdots$ and $B=L_{1} \cup L_{3} \cup \cdots$.
This shows the graph is bipartite since all non-tree edges join vertices whose layers differ by 1. (Also note that tree edges always join vertices in adjacent layers)
$(\Longrightarrow)$ Suppose that $G$ has a non-tree edges $\{u, v\}$ with $u$ and $v$ in the same layer.
Suppose their nearest common ancestor is $m$ layers higher.
Then there is a path from $u$ to $v$ in the BFS tree of length $2 m$ going through their nearest common ancestor.
Adding edge $\{u, v\}$ gives a cycle of length $2 m+1$
But a cycle of odd length can not be bipartite: indexing the adjacent vertices by $1,2, \cdots, 2 m+1$, odd and even vertices must be on opposite sides, but the edge between vertices 1 and $2 m+1$ joins vertices on the same side.

### 6.2 Connectivity in directed graphs

One approach to determining whether a directed graph is connected or not is to perform BFS on every vertex, with a time complexity of $O(n(m+n))$, which is a wasteful algorithm.

Lemma 6.2
If $u$ and $v$ are mutually reachable and $v$ and $w$ are mutually reacahble, then $u$ and $w$ are mutually reachable.

Proof. We can go from $u$ to $w$ by going from $u$ to $v$ to $w$.
Similarly, we can go from $w$ to $u$.
So to tell if a graph is strongly connected, we can fix any vertex $s$, and construct

- BFS starting from $s$
- BFS starting from $s$ with the direction of all edges being reversed.

The graph is strongly connected if and only if both searches reach every node in the graph.

### 6.3 Depth-first search

Main idea: search recursively, keeping track of where you've been.

```
DFS(s ):
    Let T be the tree with one vertex, s, with pr[s] = Null.
    DFSVisit(s)
DFSVisit(u):
    Mark u as explored
    For each edge {u, v}
        If v is not marked explored then
            Add vertex v and edge {u, v} to T
            Set pr[v] = u
            DFSVisit(v)
        Endif
    Endfor
```


## Example 6.3



DFS(1):


### 6.4 Topological sorting

Recall that a DAG is a digraph with no directed cycles.
Example: A boolean circuit. There maybe multiple ways to compute the values in a circuit, but there are some constraints on the order of operations - you need all of the operations required for the inputs of a gate to be completed before evaluating the result of the gate.

## Definition 6.4

A topological ordering is an order in which we can perform the operations sequentially, so that all required inputs are available when an operation is performed.

## Lemma 6.5

If $G$ has a topological ordering, then $G$ is a DAG.

Proof. By contradiction, suppose $G$ has a topological ordering $v 1, v_{2}, \cdots, v_{n}$ and a directed cycle $C$.
Let $v_{i}$ be the lowest-index vertex on $C$, and let $v_{j}$ be the vertex just before $v_{i}$ on $C$.
Then $\left(v_{j}, v_{i}\right)$ is an edge with $i<j$, but we must have $j<i$ in a topological ordering since $v_{j}, v_{i}$ is an edge.

Lemma 6.6
Every DAG has a vertex with indegree 0 .

Proof. Contrapositive. If every vertex has positive indegree, then there is a directed cycle.
Start from any vertex. Walk along some edge in the backwards direction (possible since the indegree is positive). After at most $n+1$ steps of this process, we must have visited some vertex twice, which means we have a directed cycle.

## Lemma 6.7

Every DAG has a topological ordering.

Proof. By induction.

A 1-vertex graph is a DAG.
Suppose the claim holds for any DAG with at most $n$ vertices.
Given an $(n+1)$ vertex DAG, find an indegree-0 vertex and delete it (and all associated edges).
The resulting graph is an $n$-vertex DAG since deletion can't create a cycle.
So the claim follows by induction.

TopoSort (G):
let $S$ be an empty set
for all vertices $v$ if $v$ has indegree 0 , add $v$ to $S$ set count[v] = indeg (v)
endfor
while $S$ is nonempty do
remove a vertex $v$ from $S$
output v
for each vertex $u$ that $v$ points to
remove edge (v, u) from the graph
decrement count[u]
if count $[u]=0$ then add $u$ to $S$
endfor
endwhile
if the graph is nonempty then
return error "graph is not a DAG"
endif
Running time: $O(n)$ initialization, for loop takes time $O(($ outdeg $v)+1)$
So, $O\left(n+\sum_{v}(\right.$ outdeg $\left.v+1)\right)=O(n+m)$

