
Lecture 6: Connectivity in Digraphs, DFS, Topological Sorting

6 Connectivity in Digraphs, DFS, Topological Sorting

6.1 Continuation of Proof from Lecture 5

Theorem 6.1
A connected graph with BFS tree T is bipartite if and only if there is no non-tree edge joining vertices in
the same layer of T .

Proof. (⇐=) Consider the bipartition A = L0 ∪ L2 ∪ · · · and B = L1 ∪ L3 ∪ · · · .
This shows the graph is bipartite since all non-tree edges join vertices whose layers differ by 1. (Also note that
tree edges always join vertices in adjacent layers)

(=⇒) Suppose that G has a non-tree edges {u, v} with u and v in the same layer.

Suppose their nearest common ancestor is m layers higher.
Then there is a path from u to v in the BFS tree of length 2m going through their nearest common ancestor.

Adding edge {u, v} gives a cycle of length 2m+ 1
But a cycle of odd length can not be bipartite: indexing the adjacent vertices by 1, 2, · · · , 2m + 1, odd and
even vertices must be on opposite sides, but the edge between vertices 1 and 2m+ 1 joins vertices on the same
side.

6.2 Connectivity in directed graphs
One approach to determining whether a directed graph is connected or not is to perform BFS on every vertex,
with a time complexity of O(n(m+ n)), which is a wasteful algorithm.

Lemma 6.2
If u and v are mutually reachable and v and w are mutually reacahble, then u and w are mutually reachable.

Proof. We can go from u to w by going from u to v to w.
Similarly, we can go from w to u.

So to tell if a graph is strongly connected, we can fix any vertex s, and construct

• BFS starting from s

• BFS starting from s with the direction of all edges being reversed.

The graph is strongly connected if and only if both searches reach every node in the graph.

6.3 Depth-first search
Main idea: search recursively, keeping track of where you’ve been.

DFS(s) :
Let T be the t r e e with one vertex , s , with pr [s] = Nul l .
DFSVisit (s)

DFSVisit (u) :
Mark u as exp lored
For each edge {u , v}

I f v i s not marked exp lored then
Add vertex v and edge {u , v} to T
Set pr [v] = u
DFSVisit (v)

Endif
Endfor

1

Lecture 6: Connectivity in Digraphs, DFS, Topological Sorting

Example 6.3

1 2

3 4
5

DFS(1):

1

2

4

3 5

6.4 Topological sorting
Recall that a DAG is a digraph with no directed cycles.

Example: A boolean circuit. There maybe multiple ways to compute the values in a circuit, but there are some
constraints on the order of operations - you need all of the operations required for the inputs of a gate to be
completed before evaluating the result of the gate.

Definition 6.4
A topological ordering is an order in which we can perform the operations sequentially, so that all
required inputs are available when an operation is performed.

Lemma 6.5
If G has a topological ordering, then G is a DAG.

Proof. By contradiction, suppose G has a topological ordering v1, v2, · · · , vn and a directed cycle C.

Let vi be the lowest-index vertex on C, and let vj be the vertex just before vi on C.
Then (vj , vi) is an edge with i < j, but we must have j < i in a topological ordering since vj , vi is an edge.

Lemma 6.6
Every DAG has a vertex with indegree 0.

Proof. Contrapositive. If every vertex has positive indegree, then there is a directed cycle.

Start from any vertex. Walk along some edge in the backwards direction (possible since the indegree is
positive). After at most n+ 1 steps of this process, we must have visited some vertex twice, which means we
have a directed cycle.

Lemma 6.7
Every DAG has a topological ordering.

Proof. By induction.

2

Lecture 6: Connectivity in Digraphs, DFS, Topological Sorting

A 1-vertex graph is a DAG.
Suppose the claim holds for any DAG with at most n vertices.
Given an (n+ 1) vertex DAG, find an indegree-0 vertex and delete it (and all associated edges).
The resulting graph is an n-vertex DAG since deletion can’t create a cycle.
So the claim follows by induction.

TopoSort (G) :
l e t S be an empty s e t
f o r a l l v e r t i c e s v

i f v has indegree 0 , add v to S
s e t count [v] = indeg (v)

endfor
whi l e S i s nonempty do

remove a ver tex v from S
output v
f o r each ver tex u that v po in t s to

remove edge (v , u) from the graph
decrement count [u]
i f count [u] = 0 then add u to S

endfor
endwhi le
i f the graph i s nonempty then

return e r r o r "graph i s not a DAG"
end i f

Running time: O(n) initialization, for loop takes time O((outdeg v) + 1)
So, O(n+

∑
v(outdeg v + 1)) = O(n+m)

3

	Connectivity in Digraphs, DFS, Topological Sorting
	Continuation of Proof from Lecture 5
	Connectivity in directed graphs
	Depth-first search
	Topological sorting

