5 Breadth First Search, Bipartiteness

- BFS (connectivity, distances, bipartiteness)
- DFS
- Topological sorting
- Next: Greedy Algorithms

5.1 Breadth First Search

BFS partitions the graph into layers L_j such that

 $L_0 = \{s\}$

 L_{j+1} = neighbors of vertices in L_j that are not already neighbors of vertices in $L_0 \cup L_1 \cup \cdots \cup L_{j-1}$

Lemma 5.1 A vertex in L_j has distance j from s.

Proof. By induction on j. Clearly, $L_0 = \{s\}$ is the set of vertices at distance 0.

If L_0, L_1, \dots, L_j satisfy the lemma, then vertices in L_{j+1} must have distance at least j+1 from s (otherwise, they would be in $L_0, L_1, \dots,$ or L_j instead).

But there exists a path of length j + 1 to all vertices in L_{j+1} since they are adjacent to vertices in L_j .

Vertices in L_{j+1} therefore satisfy the claim, so the claim follows for all j by induction.

5.1.1 Running Time

What is the running time of BFS? (in terms of n = |V| and m = |E|)

We loop over all u in V; for each, do $O(\deg(u) + 1)$ operations. Total running time: $O\left(\sum_{u \in V} (\deg(u) + i)\right) \subseteq O(m + n)$

Note that m + n is the size of the adjacency list representation of a graph.

5.2 Bipartiteness

Lemma 5.2

Let T be a BFS tree of graph G, and let u and v be vertices of T with u in layer L_i , and v in layer L_j . Suppose $\{u, v\}$ is an edge of G. Then, $|i - j| \leq 1$.

Proof. Suppose without loss of generality that u is active before v. We consider two cases:

- 1. v is in the tree when u becomes active. Then $\{u, v\}$ is a non-tree edge, and pr[v] joined the tree before u, so $j = layer(pr[v]) + 1 \le i + 1$
- 2. v is not in the tree when u becomes active. Then $\{u, v\}$ is a tree edge, and j = i + 1.

Definition 5.3

A graph G = (V, E) is **bipartite** if there is a partition (A, B) of V $(V = A \cup B, A \cap B = \emptyset)$ such that for all $\{u, v\} \in E$, either $u \in A$ and $v \in B$ or $u \in B$ and $v \in A$.

Theorem 5.4

A connected graph with BFS tree T is bipartite if and only if there is no non-tree edge joining vertices in the same layer of T.

Proof. (\Leftarrow) Consider the bipartition $A = L_0 \cup L_2 \cup \cdots$ and $B = L_1 \cup L_3 \cup \cdots$. This shows the graph is bipartite since all non-tree edges join vertices whose layers differ by 1. (Also note that tree edges always join vertices in adjacent layers)

(\Longrightarrow) Suppose that G has a non-tree edges $\{u,v\}$ with u and v in the same layer. Proof continues next lecture.