
Lecture 4: Connectivity, BFS

4 Connectivity, BFS
• BFS (connectivity, bipartiteness)

• Up next: DFS, topological sorting

4.1 Graph Definitions

Definition 4.1
A cycle is a path with v0 = vk and all other vertices distinct, with k ≥ 3 (or k ≥ 2 for digraphs).

Definition 4.2
The distance between vertices u and v is the length of a shortest path between them.

4.2 Connectivity

Definition 4.3
An undirected graph is connected if for all u, v ∈ V , there exists a path from u to v and a path from v to
u. Note that the second condition is redundant since our edges are all undirected.

Definition 4.4
A component is a set of vertices such that for all pairs of vertices in the set, there is a path between them,
and no superset of this set has this property.

Example 4.5

In this graph there are 3 components.

Definition 4.6
A digraph is strongly connected if for all u, v ∈ V , there exists a path from u to v and from v to u.

1

Lecture 4: Connectivity, BFS

Example 4.7

This directed graph is strongly connected.

Definition 4.8
A strongly connected component of a digraph is a maximal set of vertices for which the induced
subgraph is strongly connected.

Example 4.9

This graph has two strongly connected components, the three nodes circled in red, and the singular node
circled in yellow.

4.3 Trees

Definition 4.10
A forest is a graph with no cycles.

A tree is a connected forest.

Note 4.11
An n-vertex tree has m = n− 1 edges.

Definition 4.12
If we designate one vertex of a tree as the root, then the (unique) neighbor of any vertex that is closer to
the root is called its parent, and all other neighbors are its children.

A leaf of a tree is a degree-1 vertex.

A digraph with no directed cycles is called a directed acyclic graph, or DAG.

2

Lecture 4: Connectivity, BFS

4.4 Connectivity

Definition 4.13
To understand connectivity, we can construct a spanning tree, a subgraph that includes all the vertices
(i.e., is "spanning"), and is a tree.

We’ll specify a tree by giving the parent pr[v] of every vertex v, with pr[root] = ∅

4.4.1 Algorithm for constructing a spanning tree

Generic a lgor i thm f o r con s t ru c t i ng a spanning t r e e f o r the
component conta in ing s (rooted at s) :

Let T be the graph with one vertex , s , with pr [s] = nu l l .
While the re e x i s t s an edge {u , v} j o i n i n g a ver tex u o f T

with a ver tex v not in T:
Add ver tex v and edge {u , v} to T
Set pr [v] = u

We claim that the resulting graph is always a tree.

Lemma 4.14
This tree spans the component containing s.

Proof. Any vertex in this tree has a path to s: we can repeatedly take parents until they lead back to s.
There is a path between any tow vertices u and v in the tree: consider paths from u to s and v to s, and we
can join them together to form a path from u to v.

On the other hand, if u is not in T , then there is no path from u to S. If there were, we could follow
the path and find an edge from a vertex not in T to a vertex in T . But no such edge can remain when the
algorithm terminates.

4.4.2 Breadth-first search (BFS)

The main idea is to explore the graph in order of increasing distance from s.

We say that a vertex is exhausted if it is not adjacent to any vertex outside of the tree.

BFS(s) :
Let T be the t r e e with on vertex , s , with pr [s] = nu l l .
Repeat :

Let u be the unexhausted ver tex that
j o i n ed the t r e e e a r l i e s t (the ∗ a c t i v e ver tex ∗)

Choose an edge {u , v} where v i s not in T
Add vertex v and edge {u , v} to T
Set pr [v] = u

Unt i l a l l v e r t i c e s are exhausted .

3

Lecture 4: Connectivity, BFS

Example 4.15
Suppose we perform BFS(1) on

1 2

3 4
5

Node 1 is our first active vertex.

1

We add the node 2 to our graph. Note that the arrows here do not signify that our graph is directed, but
rather the direction one must go to travel to the root.

1

2

Now we add 3.

1

2 3

Now 2 is our active vertex.

1

2 3

4 5

4

	Connectivity, BFS
	Graph Definitions
	Connectivity
	Trees
	Connectivity
	Algorithm for constructing a spanning tree
	Breadth-first search (BFS)

