
Lecture 3: Asymptotic Complexity, Running Time Analysis, Graphs

3 Asymptotic Complexity, Running Time Analysis, Graphs
• Math background

– Asymptotic Notation

– Running time analysis

– Graphs

• Graph algorithms

3.1 Asymptotic Complexity

Definition 3.1
We say f(n) ∈ O(g(n)) if ∃c > 0, n0 ≥ 0 such that for all n ≥ n0, f(n) ≤ c · g(n)

We say f(n) ∈ Ω(g(n)) if ∃c > 0, n0 ≥ 0 such that for all n ≥ n0, f(n) ≥ c · g(n)

Equivalently, g(n) ∈ O(f(n)).

We say f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

Example 3.2
For the expression 10n2, we can see that:

10n2 ∈ O(n2), O(n3), ...

∈ Ω(n2),Ω(n)

We can also express strict bounds using o and ω notation:

Definition 3.3
We say f(n) ∈ o(g(n)) if limn→∞

f(n)
g(n) = 0

We say f(n) ∈ ω(g(n)) if limn→∞
g(n)
f(n) = 0

Example 3.4
We can see that 10n2 ∈ o(n3), because

lim
n→∞

10n2

n3
= lim

n→∞

10

n
= 0

3.2 Running time analysis
We need to count the elementary steps of an algorithm, which can depend on the data structures used.
Some common running times:

• Logarithmic time, O(log n). Example: binary search

• Linear time, O(n). Example: max/min of a list, etc.

• Polynomial time O(nk) for some constant k.

Example: search over subsets of size k of a set size n, where the number of subsets is:(
n

k

)
=

n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k(k − 1) · · · (2)(1)

Which leads to a running time of around Θ(nk).

1

Lecture 3: Asymptotic Complexity, Running Time Analysis, Graphs

• Exponential time, e.g., O(2n). Note that something like 3n grows asymptotically faster than 2n, so their
time complexities would not be equivalent.

Example: searching over all subsets of a set of size n.

3.3 Graphs

Definition 3.5
An undirected graph G = (V,E) is a finite set V of vertices and E of edges, which are unordered pairs
of vertices.

A directed graph (or digraph) G = (V,E) is a finite set V of vertices and a set E of edges, which are
ordered pairs of vertices.

Example 3.6

1 2

3 4
5

In this graph, we have

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, · · · }

1 2

3 4
5

In this graph, we have

V = {1, 2, 3, 4, 5}
E = {(2, 1), (1, 3), (2, 5), (5, 2), · · · }

Note 3.7
Notice that

• There are no multiple edges

• Digraphs can have self loops, because edges are denoted as ordered pairs. But the way we have defined
our undirected graphs, we can not have self loops because the edges are all sets of 2 numbers.

3.3.1 Graph Terminology

• Vertices are sometimes called nodes

• Edge {u, v} joins vertices u and v, which are its ends; u and v are adjacent; the edge is incident on
the vertices

• Edge (u, v) has tail u and head v

• The degree of a vertex, deg(v), is its number of incident edges

• In a digraph, indeg(v) (indegree of v) is the number of edges with v as the head, and outdeg(v) (outdegree
of v) is the number of edges with v as the tail

2

Lecture 3: Asymptotic Complexity, Running Time Analysis, Graphs

• n = |V |, m = |E| ∑
v∈V

deg(v) = 2m∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = m

• In an undirected graph, m ≤
(
n
2

)
= O(n2). In a digraph, m ≤ n2

• A subgraph of G = (V,E) is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Must make sure that there
are no edges in E′ that do not connected nodes that are not in V ′.

3.3.2 Graph Representations

• Adjacency matrix: |V | × |V | matrix indexed by vertices, with

Auv =

{
1 if (u, v) ∈ E

0 otherwise

• Adjacency list: for each v ∈ V , give a list Adjv of all its (outgoing) neighbors. This is a more efficient
representation for graphs that do not have many edges.

• Note that the adjacency matrix would have Θ(n2) of size, and the adjacency list would have Θ(n +m)
size.

3.3.3 Paths and Cycles

Definition 3.8
A path is a sequence of vertices (v0, v1, · · · , vk) such that (vi, vi + 1) ∈ E for all i ∈ {0, 1, · · · , k − 1}

The length of a path is its number of edges, k.

A path is simple if all its vertices and edges are distinct.

3

	Asymptotic Complexity, Running Time Analysis, Graphs
	Asymptotic Complexity
	Running time analysis
	Graphs
	Graph Terminology
	Graph Representations
	Paths and Cycles

