29 Name of Lecture

• Global minimum cut

29.1 Global Minimum Cut

A cut in an undirected graph G = (V, E) is a bipartition of the vertices $(V = A \cup B, A \cap B = \emptyset)$.

We previously discussed s-t cuts in flow networks. What if we don't specify s and t, but only require that both parts of the cut are nonempty?

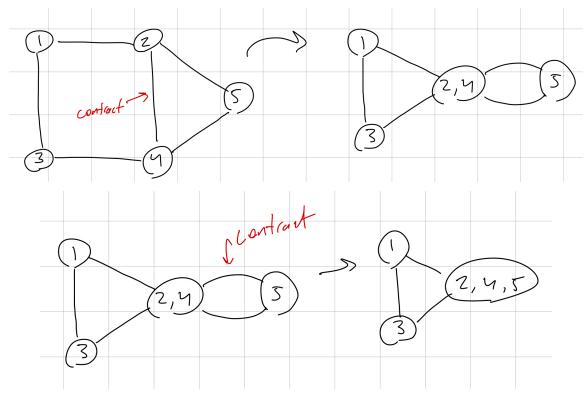
The global minimum cut, the nontrivial cut that has the smallest number of edges between A and B, measures the "robustness" of the graph.

We can solve this using network flow. Fix some vertex s. In every cut, s must be on some side. Since we don't know a t that must be in the other part of the global minimum cut, we run over all vertices $t \neq s$ and use Ford-Fulkerson algorithm to find the minimum s-t cut. The smallest of these is the global minimum cut.

This uses the Ford-Fulkerson algorithm n-1 times. Ford-Fulkerson has cost $O(C(m+n)) = O(n^3)$, so the overall procedure is $O(n^4)$.

Alternative: Karger's contraction algorithm.

- Choose an edge uniformly at random
- Contract that edge, producing a multigraph (i.e., we allow multiple edges)
- Repeat until only 2 vertices remain
- Return the cut defined by the set of original vertices that led to the two final vertices



Why should this produce the minimum cut?

Lemma 29.1

The contraction algorithm returns a global minimum cut with probability at least $\frac{1}{\binom{n}{2}}$.

Proof. Suppose the minimum cut has size k. Then every vertex v has degree at least k, since otherwise $\{v\}, V \setminus \{v\}$ would be a smaller cut.

Thus $|E| \ge \frac{1}{2}kn$.

So the probability that a uniformly random edge belongs to the minimum cut is at most $\frac{k}{\frac{1}{2}kn} = \frac{2}{n}$.

Similarly, after j iterations, we have n - j vertices.

Assuming we haven't contracted a minimum cut edge, te graph still has a minimum cut of size at least k, so it has at least $\frac{1}{2}k(n-j)$ edges, so a random edge blongs to the minimum cut with probabiliby at most $\frac{k}{\frac{1}{2}k(n-j)} = \frac{2}{n-j}$. Let E_j be the even that an edge of the minimum cut is not contracted in the Jth step.

$$\Pr(\operatorname{success}) = \Pr(E_1) \Pr(E_2|E_1) \Pr(E_3|E_1 \cap E_2) \cdots \Pr(E_{n-2}|E_1 \cap \cdots)$$
$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{3}\right)$$
$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdots \frac{1}{3}$$
$$= \frac{1}{\binom{n}{2}}$$

The success probability is small, but we can do better by repeating this many times and outputting the smallest cut we find.

Suppose the success probability in one run is ϵ . The probability we fail in all of k trials is

$$(1-\epsilon)^k \le e^{-\epsilon k}$$
 since $1-e \le e^{-\epsilon}$

We want failure probability $\leq \delta$, so $k = \frac{1}{\epsilon} \ln \frac{1}{\delta}$ suffices.

So we can find the minimum cut with probability arbitrarily close to 1 with $O(n^2)$ repetitions.

Each iteration takes time O(m), so overall the algorithm has cost $O(m \cdot n^2)$ (Can improve to $O(n^2)$ with a bit more work).