
Lecture 28: Center Selection, Randomized Algorithms

28 Center Selection, Randomized Algorithms
• Approximation algorithms: Center selection

• Randomized algorithms

28.1 Center Selection
We found an algorithm last time that produces a covering radius of 2r if r is the optimal covering radius, but
what if the optimal covering radius is unknown?

One approach uses binary search. Instead, by choosing the centers more carefully, we cna simplly remove
the need to know the covering radius.

GreedyCover (S ) :
i f k >= | S | , r e turn C = S
s e l e c t any s in S , and l e t C = { s }
whi l e |C| < k

s e l e c t s in S that maximizes d i s t ( s , C) = min c in C d i s t ( s , c )
i . e . d i s t ( s , C) i s the d i s t anc e between s and the c l o s e s t c en t e r
that has been chosen

endwhi le
re turn C

Theorem 28.1
GreedyCover(S) returns a set of k points with covering radius at most twice the optimal radius.

Proof. Assume for a contradiction that we get k points with covering radius more than wr, where r = optimal
radius.

Let s be a site at distance more than 2r from all centers.
Suppose the algorithm has centers C ′ and adds center c′.
Then c′ is at least distance 2r away from all sites in C ′ since dist(c′, C ′) ≥ dist(s, C ′) ≥ dist(s, C) > 2r.

So the algorithm implements the first k iterations of GreedyCover(S, r).
But that algorithm would have S′ ̸= ∅ after choosing k centers since s ∈ S′, so it would conclude that k centers
cannot have radius r, a contradiction.

28.2 Randomized Algorithms
28.2.1 Review of Probability Theory

Definition 28.2
A finite probability space consists of a sample space Ω (a finite set). For each outcome i ∈ Ω, there
is a probability p(i) ≥ 0 with

∑
i∈Ω p(i) = 1.

An event is a subset E ⊆ Ω, we define Pr(E) =
∑

i∈E p(i).

Example 28.3
For a fair coin, Ω = {H,T}, Pr(H) = Pr(T ) = 1
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Example 28.4
For n fair coins, Ω = {H,T}n, Pr(i) = 1

2n .
Then Pr(k heads) = 1

2n ·
(
n
k

)

1



Lecture 28: Center Selection, Randomized Algorithms

Definition 28.5
For two events E and F , the conditional probability of E given F is

Pr(E|F) =
Pr(E ∩ F)

Pr(F)

Definition 28.6
A (real-valued) random variable is a function X : Ω → R.

Example 28.7
For n fair coins, the number of heads is a random variable.

Definition 28.8
The expectation of a random variable X is

E[x] =
∑
i∈Ω

p(i)X(i)

Example 28.9
The expected number of heads for n fair coins is

∑
i∈{H,T}n

1

2n
· number of heads =

n∑
k=0

1

2n

(
n

k

)
k =

n
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Fact: Expectation is Linear. E[αX + βY ] = αE[X] + βE[Y ] even if X and Y are correlated.
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