
Lecture 27: Load Balancing, Center Selection

27 Load Balancing, Center Selection
• Approximation Algorithms

– Load balancing

– Center selection

27.1 Load Balancing

Lemma 27.1
The optimal value for the load balancing problem is at least max{ 1

m

∑
i ti,maxi ti}.

Proof. (Proof of the theorem)
Let machine J achieve the max load.
Let job i be the last job assigned to machine j.

Let Tj be the final load on machine j.
Before job i was assigned, the load on machine j was Tj − ti, which was the smallest load on any machine.

So the total load is
∑

k Tk ≥ m(Tj − ti).
=⇒ Tj − ti ≤ 1

m

∑
k Tk = 1

m

∑
l tl

So the optimal value T ∗ satisfies T ∗ ≥ Tj − ti.

But machine j also has job i, so
Tj = (Tj − ti) + ti ≤ T ∗ + T ∗ ≤ 2T ∗

Where the first inequality is achieved from the above lemma.

We can do better by sorting the jobs and considering them in order from longest to shortest.

Lemma 27.2
If there are more than m jobs, then T ∗ ≥ 2tm+1

(Here, we order the jobs so t1 ≥ t2 ≥ · · · ≥ tn)

Proof. Some machine gets 2 jobs, each of which have duration at least tm+1.

Proof. (Proof that we get approximation ratio 3
2 )

As before, suppose machine j gets the max load. If it only has one job, the schedule is optimal.
If it has at least 2 jobs, and ti is the last assigned, then ti ≤ tm+1 ≤ T∗

2 (by lemma)

But as in the proof of the previous theorem,

Tj ≤ (Tj − ti) + ti ≤ T ∗ +
T ∗

2
≤ 3

2
T ∗

27.2 Center Selection
Given n sites (specified by their coordinates), find k centers so that any site is within distance r of some center,
with r as small as possible.

Definition 27.3
The covering radius of a set of centers C for a set of sites S is the smallest r such that ∀s ∈ S, ∃c ∈ C
with dist(s, c) ≤ r.
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Possible greedy algorithm: repeatedly add the center that minimizes the covering radius.

In the case that we have 2 sites and 2 centers, the greedy algorithm would first put a center in the halfway
between the 2 sites. After that, no matter where you put the second center, the covering radius can not decrease.
But, there was a way to place the centers to make the radius 0!
So, this means the greedy approach does not get any finite approximation ratio.

For simplicity, suppose we know the optimal radius. Say there exists a set of centers C∗ with radius r. So for
any site s, there is a center c ∈ C∗ within distance r of s.
Then everything within distance r of c is within 2r of s.
So this can give us a 2r-cover.

GreedyCover (S , r )
l e t S ’ = S ( s i t e s yet to be covered )
l e t C = nu l l ( c en t e r s )
whi l e S ’ != nu l l

choose any s in S ’
add s to C
de l e t e a l l s i t e s from S ’ with in d i s t anc e 2 r o f s

endwhi le
re turn C

We claim that if this algorithm returns a cover C with |C| > k, then no set of k centers can have covering radius
≤ r.

Proof. Suppose (for contradiction) there exists some C∗ with |C∗| = k and covering radius at most r. Since C
(output by the greedy algorithm) satisfies C ⊆ S, there must be a c∗ ∈ C∗ within distance r of any c ∈ C.

Claim: No c∗ ∈ C∗ can be within distance r of two centers in C.

Assuming the claim, each c ∈ C has a unique c∗ ∈ C∗, so |C∗| ≥ |C| > k, a contradiction.

To see the claim: Suppose there is a c, c′ ∈ C with dist(c, c∗) ≤ r, and dist(c′, c∗) ≤ r.
But then dist(c, c∗) + dist(c∗, c′) ≥ dist(c, c′) > 2r
Which contradicts the triangle inequality.
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