25 Intractability (NP-completeness of 3-SAT, NP-complete problems)

- Intractability
- NP-completeness of 3-SAT
- Hamiltonian cycle
- Rest of course: approximation algorithms and randomized algorithms

Proof. (That 3-SAT is NP-complete)
3-SAT is in NP since we can provide a satisfying assignment as the proof. This can be efficiently verified by checking that each clause evaluates to true.

Given any instance of Circuit SAT, we construct an instance of 3-SAT (so that one is satisfiable iff the other is).
Introduce a variable x_{v} for every vertex v of the circuit.
In the case of a negation gate, we add the following clauses:

The satisfiability of the circuit is in one to one correspondence with the satisfiability of the clauses.

We also claim that the or gate above corresponds to the clauses $\left(x_{v} \vee \bar{x}_{u}\right) \wedge\left(x_{v} \vee \bar{x}_{w}\right) \wedge\left(\bar{x}_{v} \vee x_{u} \vee x_{w}\right)$.
And for and gates: $\left(x_{v} \vee \bar{x}_{u} \vee \bar{x}_{w}\right) \wedge\left(\bar{x}_{v}, x_{u}\right) \wedge\left(\bar{x}_{v} \vee x_{w}\right)$.
A 0 input corresponds to \bar{x}_{v}, a 1 input corresponds to x_{v}, a free input corresponds to nothing, and an output corresponds to x_{v}.

To make this into a 3 SAT formula, we add variables z_{1}, z_{2}, z_{3}, z_{4} with clauses $\left(\bar{z}_{i} \vee z_{3} \vee z_{4}\right) \wedge\left(\bar{z}_{i} \vee z_{3} \vee\right.$ $\left.\bar{z}_{4}\right) \wedge\left(\bar{z}_{i} \vee \bar{z}_{3} \vee z_{4}\right) \wedge\left(\bar{z}_{i} \vee \bar{z}_{3} \vee \bar{z}_{4}\right)$ for $i=1$ and $i=2$.
This forces z_{1} and z_{2} to be false in any 3SAT problem that contains these 8 clauses.
Then we can pad clauses with 1 or 2 terms to have exactly 3 terms by adding z_{1} and z_{2} to them. For example, we can pad x_{v} to be $x_{v} \vee z_{1} \vee z_{2}$, and the entire clause will be true if and only if x_{v} is true.

25.1 Other NP-complete problems

- Travelling salesperson problem: given cities v_{1}, \cdots, v_{n}, distances $d\left(v_{i}, v_{j}\right)$, and a bound D, is there a tour of the cities with total length $\leq D$?
- Hamiltonian Cycle: is there a cycle that visits each vertex of a given graph exactly once?
- 3-dimensional matching: given disjoint sets X, Y, Z, each of size n, and a set $T \subseteq X \times Y \times Z$ of ordered triples, is there a subset of triples within T so that every element of $X \cup Y \cup Z$ is included in exactly one triple?
- 3-coloring problem: can we assign 3 colors to the vertices of a graph so that no two adjacent vertices have the same color?
- Subset sum: given numbers w_{1}, \cdots, w_{n} and a target W, is there a subset of the w_{i} s that sums to W ?
- Scheduling with release times and deadlines: given n jobs indexed by $i \in\{1, \cdots, n\}$. job j has release time r_{i}, deadline d_{i}, duration t_{i}.
job i must be scheduled for duration t_{i}, starting after r_{i}, and ending before d_{i}.

25.1.1 Example: Hamiltonian Cycle

Definition 25.1

Given a digraph $G=(V, E)$, a hamiltonian cycle is a cycle that contains each vertex.

