# 23 Reductions, Polynomial Reducibility, Satisfiability Problem

- Reductions
- NP and NP-Completeness

# 23.1 Reductions

To show that problem X is at least as hard as Y, we can give a **reduction** from Y to X, a procedure that solves Y using the ability to solve X.

To have this quantify efficiency, we want the procedure to be efficient.

Definition 23.1

If any instance of Y can be solved by a polynomial time algorithm that can make polynomially many calls to a procedure for solving instances of X, then we say "Y is polynomial-time reducible to X" and write  $Y \leq_P X$ .

 $Y \leq_P X$  - note that this means that X is at least as hard as Y. Y could be solved in a smaller amount of time than X. If X can be solved in polynomial time, we know that Y can also be solved in polynomial time. If X can only be solved in exponential time, Y could still be solved in polynomial time.

Example 23.2

We showed Bipartite Matching  $\leq_P$  Max Flow.

#### Definition 23.3

An independent set in a graph is a subset of vertices, no two of which are adjacent.

The maximum independent set problem asks us to find a largest independent set in a given graph.

## Definition 23.4

A vertex cover of a graph is a subset of vertices such that every edge has at least one end in that subset.

The vertex cover problem asks us to find a smallest vertex cover.

## Example 23.5

Observe the following example of a graph:



The nodes highlighted blue represent a solution to a maximum independent set, and the ones highlighted green represent a minimum vertex cover.

Lemma 23.6 For any graph G = (V, E), a vertex subset  $S \subseteq V$  is an independent set iff  $V \setminus S$  is a vertex cover.

*Proof.* Suppose S is an independent set. Then for any  $\{u, v\} \in E$ , at most one of u, v is in S, so at least one is in  $V \setminus S$ , so  $V \setminus S$  is a vertex cover.

Suppose  $V \setminus S$  is a vertex cover. Suppose for a contradiction that  $u \in S$  and  $v \in S$  and  $\{u, v\} \in E$ . Then, neither end of e is in  $V \setminus S$ , so this is a contradiction. So, S is an independent set.

This shows that Independent Set  $\leq_P$  Vertex Cover, and Vertex Cover  $\leq_P$  Independent Set.

Now consider the **Set Cover** problem: Given a set U and subsets  $S_1, S_2, \dots, S_m \subseteq U$ , find a minimal subset of the  $S_i$ 's so that their union is all of U.

Theorem 23.7 Vertex Cover  $\leq_P$  Set Cover

*Proof.* Given an instance of Vertex Cover (a graph G = (V, E)), construct an instance of set cover.

Let U = E. For all  $v \in V$ , let  $S_v$  = set of edges incident on v.

Claim: G can be covered with k vertices iff U can be covered with  $k S_v$ 's.

- If  $\{v_1, \dots, v_k\}$  is a vertex cover, then  $S_{v_1}, \dots, S_{v_n}$  includes all the edges.
- If  $S_{v_1}, \dots, S_{v_n}$  is a set cover, then  $\{v_1, \dots, v_k\}$  is a vertex cover.

#### 23.1.1 Boolean Satisfiability

#### Definition 23.8

Given a set of Boolean variables  $x_1, \dots, x_n$ , a **term** or **literal** is  $x_i$  or  $\overline{x}_i$ .

A clause is a disjunction of terms (Ex:  $x_2 \lor x_6 \lor \overline{x}_{11}$ ).

We say a set of clauses is **satisfiable** if there is an assignment of the  $x_i$ 's to true/false so that all clauses evaluate to true.

The **Satisfiability** problem (SAT) asks whether a given set of clauses is satisfiable. In 3SAT, each clause has exactly 3 terms (no variables can be repeated within a clause).

Theorem 23.9 3SAT  $\leq_P$  Independent Set

*Proof.* Given a 3SAT instance, we use "gadgets" to construct a graph that has a big independent set iff the 3SAT instance is satisfiable.

For clause  $C_j$ , introduce vertices  $v_{j_1}$ ,  $v_{j_2}$ ,  $v_{j_3}$ . Connect them with a triangle. Connect  $v_{jl}$  and  $v_{j'l'}$  if term l in  $C_j$  is the negation of term l' in  $C_{j'}$ . 

Claim: formula is satisfiable iff this graph has an independent set of size equal to the number of clauses  $\Box$