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Lecture 2
Assignment 1 is out, due in February 15th

Will be going into more depth on the stable matching problem, and then on “math 
background”.

Example
Suppose we have students  and companies , with their preferences as 
follows:

Is  a stable matching?

No,  and  would rather defect to pair up with each other.

Gale-Shapley algorithm

Initially, all companies and students are unengaged. 
While there is a company C that is unengaged and hasn't made an offer 
to every student: 
 Let S be the highest ranked student for C to whom C has not yet made 
 an offer. 
 If S is unengaged then 
  (C, S) become engaged. 
 Else 
  Let C' be the company that S is engaged to. 
  If S prefers C to C' then 
   (C, S) become engaged 
   C' becomes unengaged 
  endif 
 endif 
endwhile 
Output the set of engaged pairs

Lemma 1: Once a student receives an offer, she remains engaged until the end of the 
algorithm, and her job can only improve over time.

Proof: An unengaged student who receives an offer always becomes engaged.

A,B,C X,Y ,Z

A : X,Y ,Z B : X,Z,Y C : Y ,Z,X

X : B,A,C Y : C,A,B Z : A,B,C
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An engaged student can only switch companies; they cannot become unengaged.

A student only switches to a company they prefer.  

Lemma 2: As the algorithm proceeds, the sequence of students engaged to a given 
company can only decrease in preference over time.

Proof: Companies make offers in decreasing preference order.

Lemma 3: If there are  companies, then the algorithm will terminate after at most  
iterations of the while loop.

Proof: Let  be the set of pairs  such that  has made an offer to  by the end 
of the th iteration.

We have .

Since the sequence of values  is strictly increasing (by exactly 1 every time), and 
there are exactly  pairs , the algorithm must terminate after at most  steps. 

Lemma 4: The algorithm outputs a perfect matching. (every student has an offer, and 
every company is engaged)

Proof: New engagements are only created between parties who are not otherwise 
engaged (either because they were never previously engaged, or because they broke 
an engagement and took a new one), so the set of engagements is always a matching 
(I think this means you can’t have multiple people paired to a company and vice versa).

Suppose that at the end of the algorithm (which happens by Lemma 3), there is some 
company  and student  who are unengaged.

Then  must have made an offer to . But once a student receives an offer, they remain 
engaged until the end of the algorithm (by Lemma 1).

This is a contradiction, so the matching must be perfect. 

Theorem: The matching output by the algorithm is stable.

Proof: Suppose (for a contradiction) that there is some pair  such that  prefers  
to its assigned student  and  prefers  to their assigned company .

Then,  must have made an offer to  before  (since it makes offers in decreasing 
preference order). What went wrong?

Either:
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 had a job she preferred to , so she rejected the offer, or 

 accepted ’s offer, but later switched to a company that  preferred more.

Either way,  ends up with a job they prefers to .

But  actually ends up with , which is less preferred than , which is a contradiction. 

Therefore, the algorithm is correct.

We also showed that it runs in time , but to describe the input takes around  
words (each company and student has  students/companies to list for their 
preferences), so in a way the running time increases linearly with input size, which is 
pretty good.

Math Background
Asymptotic notation

We’ll use big-O notation to express upper bounds on running times of algorithms.

Example: Running time 

Definition: We say  if  such that for all , 

We usually consider algorithms to be efficient if they run in time  for some 
constant  (a polynomial time algorithm).
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