
Lecture 2 1

Lecture 2
Assignment 1 is out, due in February 15th

Will be going into more depth on the stable matching problem, and then on “math
background”.

Example
Suppose we have students and companies , with their preferences as
follows:

Is a stable matching?

No, and would rather defect to pair up with each other.

Gale-Shapley algorithm

Initially, all companies and students are unengaged.
While there is a company C that is unengaged and hasn't made an offer
to every student:
 Let S be the highest ranked student for C to whom C has not yet made
 an offer.
 If S is unengaged then
 (C, S) become engaged.
 Else
 Let C' be the company that S is engaged to.
 If S prefers C to C' then
 (C, S) become engaged
 C' becomes unengaged
 endif
 endif
endwhile
Output the set of engaged pairs

Lemma 1: Once a student receives an offer, she remains engaged until the end of the
algorithm, and her job can only improve over time.

Proof: An unengaged student who receives an offer always becomes engaged.

A,B,C X,Y ,Z

A : X,Y ,Z B : X,Z,Y C : Y ,Z,X

X : B,A,C Y : C,A,B Z : A,B,C

(A,X), (B,Z), (C,Y)

B X

Lecture 2 2

An engaged student can only switch companies; they cannot become unengaged.

A student only switches to a company they prefer.

Lemma 2: As the algorithm proceeds, the sequence of students engaged to a given
company can only decrease in preference over time.

Proof: Companies make offers in decreasing preference order.

Lemma 3: If there are companies, then the algorithm will terminate after at most
iterations of the while loop.

Proof: Let be the set of pairs such that has made an offer to by the end
of the th iteration.

We have .

Since the sequence of values is strictly increasing (by exactly 1 every time), and
there are exactly pairs , the algorithm must terminate after at most steps.

Lemma 4: The algorithm outputs a perfect matching. (every student has an offer, and
every company is engaged)

Proof: New engagements are only created between parties who are not otherwise
engaged (either because they were never previously engaged, or because they broke
an engagement and took a new one), so the set of engagements is always a matching
(I think this means you can’t have multiple people paired to a company and vice versa).

Suppose that at the end of the algorithm (which happens by Lemma 3), there is some
company and student who are unengaged.

Then must have made an offer to . But once a student receives an offer, they remain
engaged until the end of the algorithm (by Lemma 1).

This is a contradiction, so the matching must be perfect.

Theorem: The matching output by the algorithm is stable.

Proof: Suppose (for a contradiction) that there is some pair such that prefers
to its assigned student and prefers to their assigned company .

Then, must have made an offer to before (since it makes offers in decreasing
preference order). What went wrong?

Either:

□

n n2

P(t) (c, s) c s

t

∣P(t+ 1)∣ = ∣P(t)∣ + 1

∣P(t)∣
n2 (c, s) n2 □

c s

c s

□

(c, s) c s

s’ s c c’

c s s’

Lecture 2 3

 had a job she preferred to , so she rejected the offer, or

 accepted ’s offer, but later switched to a company that preferred more.

Either way, ends up with a job they prefers to .

But actually ends up with , which is less preferred than , which is a contradiction.

Therefore, the algorithm is correct.

We also showed that it runs in time , but to describe the input takes around
words (each company and student has students/companies to list for their
preferences), so in a way the running time increases linearly with input size, which is
pretty good.

Math Background
Asymptotic notation

We’ll use big-O notation to express upper bounds on running times of algorithms.

Example: Running time

Definition: We say if such that for all ,

We usually consider algorithms to be efficient if they run in time for some
constant (a polynomial time algorithm).

s c

s c s

s c

s c’ c □

O(n)2 2n2

n

10n +2 2n+ 5000 ∈ O(n)2

f(n) ∈ O(g(n)) ∃c > 0,n ≥0 0 n ≥ n0
f(n) ≤ c ⋅ g(n)

O(n)a

a

