Lecture 2

Assignment 1 is out, due in February 15th
Will be going into more depth on the stable matching problem, and then on "math background".

Example

Suppose we have students A, B, C and companies X, Y, Z, with their preferences as follows:

$$
\begin{aligned}
& A: X, Y, Z \quad B: X, Z, Y \quad C: Y, Z, X \\
& X: B, A, C \quad Y: C, A, B \quad Z: A, B, C \\
& \text { Is }(A, X),(B, Z),(C, Y) \text { a stable matching? }
\end{aligned}
$$

No, B and X would rather defect to pair up with each other.

Gale-Shapley algorithm

```
Initially, all companies and students are unengaged.
While there is a company C that is unengaged and hasn't made an offer
to every student:
        Let S be the highest ranked student for C to whom C has not yet made
        an offer.
        If S is unengaged then
            (C, S) become engaged.
        Else
            Let C' be the company that S is engaged to.
            If S prefers C to C' then
            (C, S) become engaged
            C' becomes unengaged
        endif
    endif
endwhile
Output the set of engaged pairs
```

Lemma 1: Once a student receives an offer, she remains engaged until the end of the algorithm, and her job can only improve over time.

Proof: An unengaged student who receives an offer always becomes engaged.

An engaged student can only switch companies; they cannot become unengaged.
A student only switches to a company they prefer.
Lemma 2: As the algorithm proceeds, the sequence of students engaged to a given company can only decrease in preference over time.

Proof: Companies make offers in decreasing preference order.
Lemma 3: If there are n companies, then the algorithm will terminate after at most n^{2} iterations of the while loop.

Proof: Let $P(t)$ be the set of pairs (c, s) such that c has made an offer to s by the end of the t th iteration.

We have $|P(t+1)|=|P(t)|+1$.
Since the sequence of values $|P(t)|$ is strictly increasing (by exactly 1 every time), and there are exactly n^{2} pairs (c, s), the algorithm must terminate after at most n^{2} steps.

Lemma 4: The algorithm outputs a perfect matching. (every student has an offer, and every company is engaged)

Proof: New engagements are only created between parties who are not otherwise engaged (either because they were never previously engaged, or because they broke an engagement and took a new one), so the set of engagements is always a matching (I think this means you can't have multiple people paired to a company and vice versa). Suppose that at the end of the algorithm (which happens by Lemma 3), there is some company c and student s who are unengaged.

Then c must have made an offer to s. But once a student receives an offer, they remain engaged until the end of the algorithm (by Lemma 1).

This is a contradiction, so the matching must be perfect.

Theorem: The matching output by the algorithm is stable.
Proof: Suppose (for a contradiction) that there is some pair (c, s) such that c prefers s to its assigned student s^{\prime} and s prefers c to their assigned company c^{\prime}.

Then, c must have made an offer to s before s^{\prime} (since it makes offers in decreasing preference order). What went wrong?

Either:

- s had a job she preferred to c, so she rejected the offer, or
- s accepted c 's offer, but later switched to a company that s preferred more.

Either way, s ends up with a job they prefers to c.
But s actually ends up with c^{\prime}, which is less preferred than c, which is a contradiction.

Therefore, the algorithm is correct.
We also showed that it runs in time $O\left(n^{2}\right)$, but to describe the input takes around $2 n^{2}$ words (each company and student has n students/companies to list for their preferences), so in a way the running time increases linearly with input size, which is pretty good.

Math Background

Asymptotic notation

- We'll use big-O notation to express upper bounds on running times of algorithms.

Example: Running time $10 n^{2}+2 n+5000 \in O\left(n^{2}\right)$
Definition: We say $f(n) \in O(g(n))$ if $\exists c>0, n_{0} \geq 0$ such that for all $n \geq n_{0}$, $f(n) \leq c \cdot g(n)$
We usually consider algorithms to be efficient if they run in time $O\left(n^{a}\right)$ for some constant a (a polynomial time algorithm).

