
Lecture 19: Network Flow

19 Network Flow

19.1 Flow Networks

Example 19.1
Take the following flow network from last lecture:

Given the example flow from last class, the residual flow network will be the following:

Definition 19.2
An augmenting path is a simple path from s to t in the residual network with positive capacity.

19.1.1 Ford-Fulkerson Algorithm

How do we find an augmenting path? We can just use BFS.

How do we augment? For a path P and flow f , let bottleneck(P, f) be the smallest capacity of any edge
on P in the residual network corresponding to f .

Augment( f , P ) :
l e t b = bot t l eneck (P, f )
f o r each edge e = (u , v ) along P

i f e i s a forward edge
i n c r e a s e f ( e ) by b

e l s e ( e i s a backward edge )
dec r ea se f ( ( v , u ) ) by b

end i f

Why does Augment(f, P ) produce a valid flow?

• If e is a forward edge, we increase the flow by b. Every edge along P has residual capacity at least b, so
we satisfy the capacity constraint.
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• If e is a backward edge, then we decrease the flow by b (on the original network), which is at most f(e),
so the resulting flow is non-negative.

• Whenever we add flow into an internal (not source or sink) vertex, we add the same flow going out.

MaxFlow(G, c , s , t ) :
Let f ( e ) = 0 f o r a l l edges e o f G
While the re i s a s imple path P from s to t

in the r e s i d u a l network o f f low f
Update f to Augment( f , P)
update r e s i d u a l network to use new f low f

Endwhile
re turn f

19.1.2 Termination and Running Time

Lemma 19.3
The value of the flow strictly increases at every step of the algorithm.

Proof. The first edge of the augmenting path P starts from s. The flow along this edge is increased by
b = bottleneck(P, f) > 0. Since P is simple, this is the only edge of P that involves s, so the value of the flow
is increased by b.

Lemma 19.4
At each step of the algorithm, the flow values and residual capacities are all integers.

Proof. This is true initially. Every step just involves adding/subtracting flows and capacities, so this remains
true for the whole algorithm.

Thus, the value of the flow increases by at least 1 at every step.

The largest possible flow value is at most

C =
∑

e ∈ E leaving s

ce

So, the algorithm goes through the loop at most C times.

Since each pass through the loop can be implemented in time O(m+n), the overall running time is O(C ·(m+n)).

19.1.3 Maximum Flows and Minimum Cuts

A cut in G = (V,E) is a bipartition of V (V = A ∪B, A ∩B = ∅).

This is an s− t cut if s ∈ A and t ∈ B.

In a flow network, the capacity of an s− t cut is the total capacity of all edges leaving A.

c(A,B) =
∑

e out of A

ce
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Example 19.5
Take the flow network from before:

The cut A = {s} has capacity 3.
The cut A = {s, u, v} has capacity 3.
The cut A = {s, u} has capacity 5.
The cut A = {s, v} has capacity 4.
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