Lecture 19: Network Flow

19 Network Flow

19.1 Flow Networks

Example 19.1
Take the following flow network from last lecture:

S
S E £
T

Given the example flow from last class, the residual flow network will be the following:

ﬂwb&w(

1/}/@\\"\ Neboade: ;/i\\

Definition 19.2
An augmenting path is a simple path from s to ¢ in the residual network with positive capacity.

19.1.1 Ford-Fulkerson Algorithm

How do we find an augmenting path? We can just use BFS.

How do we augment? For a path P and flow f, let bottleneck(P, f) be the smallest capacity of any edge
on P in the residual network corresponding to f.

Augment (f, P):
let b = bottleneck (P, f)
for each edge e = (u, v) along P
if e is a forward edge
increase f(e) by b
else (e is a backward edge)
decrease f((v, u)) by b
endif

Why does Augment(f, P) produce a valid flow?

e If e is a forward edge, we increase the flow by b. Every edge along P has residual capacity at least b, so
we satisfy the capacity constraint.



Lecture 19: Network Flow

e If ¢ is a backward edge, then we decrease the flow by b (on the original network), which is at most f(e),
so the resulting flow is non-negative.

e Whenever we add flow into an internal (not source or sink) vertex, we add the same flow going out.

MaxFlow (G, ¢, s, t):
Let f(e) = 0 for all edges e of G
While there is a simple path P from s to t
in the residual network of flow f

Update f to Augment(f, P)

update residual network to use new flow f
Endwhile
return f

19.1.2 Termination and Running Time

Lemma 19.3
The value of the flow strictly increases at every step of the algorithm.

Proof. The first edge of the augmenting path P starts from s. The flow along this edge is increased by
b = bottleneck(P, f) > 0. Since P is simple, this is the only edge of P that involves s, so the value of the flow
is increased by b. O

Lemma 19.4
At each step of the algorithm, the flow values and residual capacities are all integers.

Proof. This is true initially. Every step just involves adding/subtracting flows and capacities, so this remains
true for the whole algorithm. O

Thus, the value of the flow increases by at least 1 at every step.

The largest possible flow value is at most

C = Z Ce

e € E leaving s

So, the algorithm goes through the loop at most C' times.

Since each pass through the loop can be implemented in time O(m+n), the overall running time is O(C'- (m+n)).

19.1.3 Maximum Flows and Minimum Cuts

A cut in G = (V, E) is a bipartition of V (V = AUB, AN B = ©).
Thisisan s —t cutif s€ Aandt € B.

In a flow network, the capacity of an s — t cut is the total capacity of all edges leaving A.

(A,B)= Y o«

e out of A



Lecture 19: Network Flow

Example 19.5
Take the flow network from before:

The cut A = {s} has capacity 3.
The cut A = {s,u,v} has capacity 3.
The cut A = {s,u} has capacity 5.
The cut A = {s, v} has capacity 4.




	Network Flow
	Flow Networks
	Ford-Fulkerson Algorithm
	Termination and Running Time
	Maximum Flows and Minimum Cuts



