
Lecture 17: Shortest Paths in Graphs with Negative Weights

17 Shortest Paths in Graphs with Negative Weights
• Shortest paths in graphs with negative weights

• Next: network flow

17.1 Shortest Paths in Graphs with Negative Weights
Problem: Given a digraph G = (V,E) with edge weights cuv for each edge (u, v) ∈ E and vertices s, t ∈ V , find
a minimum cost path from s to t, where the cost of a path is the sum of the edge weights.

Assumption: G does not contain any negative cost cycles. If there are negative cost cycles, then our low-
est possible cost would be arbitrary low.

We can’t necessarily use Dijkstra’s algorithm, because it greedily selects the lowest weight edge that is ad-
jacent to the nodes that we have visited, which only works when there are no negative edges.

17.1.1 Bellman-Ford Algorithm

Main idea: let opt(i, v) = minimum cost of a path from v to t using at most i edges.

Why is the memo not too big?

• only n vertices v.

• the minimum cost path is simple, so we only need to consider paths of length ≤ n− 1.

Does the minimum cost path for opt(i, v) use all i edges?

• no: opt(i, v) = opt(i− 1, v)

• yes: opt(i, v) = minu∈V (opt(i− 1, u) + cuv), where cuv = ∞ if (u, v) /∈ E.

Initial conditions: opt(0, t) = 0, opt(0, v) = ∞ for all v ̸= t.

Our goal is to compute opt(n− 1, s).

BF(G, c , s , t) :
l e t n = number o f v e r t i c e s o f G
l e t M be an nxn array
l e t M[0 , t] = 0 and M[0 , v] = i n f t y f o r a l l v != t
f o r i=1 to n−1 do

f o r v in V do
l e t M[i , v] = min{M[i −1, v] ,

min{M[i −1, u] + c_uv f o r u in V}}
endfor

endfor
re turn M[n−1, s]

The total running time of this algorithm is O(n ·
∑

v∈V (dv + 1)) = O(n · (m+ n)), where dv is the outdegree of
v.

1

	Shortest Paths in Graphs with Negative Weights
	Shortest Paths in Graphs with Negative Weights
	Bellman-Ford Algorithm

