16 Sequence Alignment

- Sequence alignment
- Next: shortest paths in graphs with negative weights

16.1 Sequence Alignment

A way of comparing strings: line them up, possibly with gaps, to minimize the mismatches.

Example 16.1

Suppose we have strings $G A C G T T A$ and $G A A C G C T A$.

We could align them as follows:
GA_CGTTA
$G A \bar{A} C G C T A$
But this is not a perfect alignment, since there are mismatches and gaps.
To quantify the quality of an alignment, we can define a gap penalty δ and a mismatch penalty $\alpha_{x y}$ for symbols x and y, with the total cost being the sum of the penalties.

Our goal is to find the alignment of lowest cost.

Example 16.2

$G A _C G _T T A$
$G A \bar{A} C G \bar{C} T_{-} A$
Here, the cost is 3δ.

Definition 16.3

Given strings $x \in \Sigma^{n}$ and $y \in \Sigma^{m}$ (Σ being an alphabet), a matching of sets I and J is a set of ordered pairs (i, j) with $i \in I, j \in J$ such that each $i \in I$ and $j \in J$ appears at most once (some can be unpaired).

Definition 16.4

A matching M of $\{1, \cdots, n\}$ and $\{1, \ldots, m\}$ is an alignment if there are no "crossings", i.e., if $(i, j) \in M$ and $\left(i^{\prime}, j^{\prime}\right) \in M$ with $i<i^{\prime}$, then $j<j^{\prime}$.

Example 16.5

$M=\{(1,3),(2,2)\}$ is a matching but not an alignment.

16.1.1 Dichotomy for defining subproblems

Are the last two symbols matched? i.e., is $(n, m) \in M$?
If not, then we know something more: either the last symbol of x or the last symbol of y must be unpaired. This is because if both x_{n} and y_{m} are matched, but not to each other, then there must be a crossing.

Subproblem: sequence alignment of $x_{1} x_{2} \cdots x_{i}$ with $y_{1} y_{2} \cdots y_{j}$.
Let $\operatorname{opt}(i, j)$ be the minimum cost of an alignment between these substrings.
Is x_{i} aligned with y_{j} ?

- If yes, then $\operatorname{opt}(i, j)=\alpha_{x_{i} y_{j}}+\operatorname{opt}(i-1)(j-1)$.
- If no, then is x_{i} unmatched?
- If yes, then $\operatorname{opt}(i, j)=\delta+\operatorname{opt}(i-1, j)$
- If no, then y_{j} must be unmatched, so $\operatorname{opt}(i, j)=\delta+\operatorname{opt}(i, j-1)$.

In general, we have

$$
\operatorname{opt}(i, j)=\min \left\{\alpha_{x_{i} y_{j}}+\operatorname{opt}(i-1, j-1), \delta+\operatorname{opt}(i-1, j), \delta+\operatorname{opt}(i, j-1)\right\}
$$

We define $\operatorname{opt}(i, 0)=i \cdot \delta$, and $\operatorname{opt}(0, j)=j \cdot \delta$.
Alignment (x, y) :
let A be an $(n+1) x(m+1)$ array indexed by
i in $\{0,1, \ldots, \mathrm{n}\}$ and j in $\{0,1, \ldots, \mathrm{~m}\}$
let $\mathrm{A}[\mathrm{i}, 0]=\mathrm{i} *$ delta for all i in $\{0,1, \ldots \mathrm{n}\}$
let $\mathrm{A}[0, \mathrm{j}]=\mathrm{j} *$ delta for all j in $\{0,1, \ldots \mathrm{~m}\}$
for $\mathrm{i}=1, \ldots, \mathrm{n}$
for $\mathrm{j}=1, \ldots, \mathrm{~m}$
 delta $+\mathrm{A}[\mathrm{i}-1, \mathrm{j}]$, delta $+\mathrm{A}[\mathrm{i}, \mathrm{j}-1]\}$
endfor
endfor
return $\mathrm{A}[\mathrm{n}, \mathrm{m}]$

