16 Sequence Alignment

- Sequence alignment
- Next: shortest paths in graphs with negative weights

16.1 Sequence Alignment

A way of comparing strings: line them up, possibly with gaps, to minimize the mismatches.

Example 16.1 Suppose we have strings *GACGTTA* and *GAACGCTA*.

We could align them as follows: GA_CGTTA GAACGCTA

But this is not a perfect alignment, since there are mismatches and gaps.

To quantify the quality of an alignment, we can define a **gap penalty** δ and a **mismatch penalty** α_{xy} for symbols x and y, with the total cost being the sum of the penalties.

Our goal is to find the alignment of lowest cost.

Example 16.2 GA_CG_TTA $GAACGCT_A$ Here, the cost is 3δ .

Definition 16.3

Given strings $x \in \Sigma^n$ and $y \in \Sigma^m$ (Σ being an alphabet), a **matching** of sets I and J is a set of ordered pairs (i, j) with $i \in I$, $j \in J$ such that each $i \in I$ and $j \in J$ appears at most once (some can be unpaired).

Definition 16.4 A matching M of $\{1, \dots, n\}$ and $\{1, \dots, m\}$ is an **alignment** if there are no "crossings", i.e., if $(i, j) \in M$ and $(i', j') \in M$ with i < i', then j < j'.

Example 16.5

 $M = \{(1,3), (2,2)\}$ is a matching but not an alignment.

16.1.1 Dichotomy for defining subproblems

Are the last two symbols matched? i.e., is $(n, m) \in M$?

If not, then we know something more: either the last symbol of x or the last symbol of y must be unpaired. This is because if both x_n and y_m are matched, but not to each other, then there must be a crossing.

Subproblem: sequence alignment of $x_1 x_2 \cdots x_i$ with $y_1 y_2 \cdots y_j$.

Let opt(i, j) be the minimum cost of an alignment between these substrings.

Is x_i aligned with y_j ?

- If yes, then $opt(i, j) = \alpha_{x_i y_j} + opt(i-1)(j-1)$.
- If no, then is x_i unmatched?

- If yes, then $opt(i, j) = \delta + opt(i - 1, j)$

- If no, then y_j must be unmatched, so $opt(i, j) = \delta + opt(i, j - 1)$.

In general, we have

$$opt(i,j) = \min\{\alpha_{x_iy_j} + opt(i-1,j-1), \delta + opt(i-1,j), \delta + opt(i,j-1)\}$$

We define $opt(i, 0) = i \cdot \delta$, and $opt(0, j) = j \cdot \delta$.