Lecture 15: Knapsack

15 Knapsack

e Dynamic Programming
e Knapsack
e Sequence Alignment

In general, a dynamic programming algorithm works by choosing a set of subproblems and relating them through
some recurrence.
To be efficient, we need:

e Only polynomially many subproblems
e The solution of a problem should be efficiently computable from the solutions of its subproblems

e We can express the solution in terms of a reurrence involving only "smaller" subproblems

15.1 Knapsack

We are given n items, where item ¢ has a positive integer weight w; (for all i € {1,--- ,n}).
We are given an upper bound W on the total weight we can fit into our knapsack.

Our goal is to find a subset S C {1,---,n} that maximizes the total weight), s w; subject to the con-
straint that 3, qw; < W.

To give a dynamic programming algorithm, what should the subproblems be?

The natural approach would be to just consider items {1,---,j}.
Let opt(j) = optimal solution on items {1,---,j}.
Starting from the last item: is item n part of the optimal solution?
e If not, then opt(n) = opt(n — 1).
e If yes, then opt(n) = w,, + opt(n — 1) with a lower weight limit W — w,,.

Our subproblems are not rich enough to express this idea of a different weight limit!
Instead, let opt(j,w) be the optimal solutions on items {1,---,j} with weight limit w.
Our goal is to compute opt(n, W).

We ask if item j is part of the optimal solution on items {1,--- ,j} with total weight < w?
e If not, then opt(j,w) = opt(j — 1, w)
e If yes, then opt(j, w) = w; +opt(j — 1, w — w;).

We set the base case here to be opt(0,w) = 0 for any w.

Recurrence:
. opt(j — 1, w if w; >w
opt(j, w) = \) : L
max{opt(j — 1,w),w; +opt(j — 1w —w;)} fw; <w

Knapsack (n, W):
let M be an (n+1)x(W+1) array of integers
let M[0, w] = 0 for all w from 0 to W
for j=1 to n
for w=0 to W
if w j > w then
let M[j, w| =M[j—1, w|
else
let M[j, w] = max{M[j—1, w], w_j +M[j—1, ww_j]}

Lecture 15: Knapsack

endif
endfor
endfor
return M[n, W]

Running time: O(n - W) since the body of the loop takes time O(1).

This algorithm is linear in n, but exponential in log W'.

	Knapsack
	Knapsack

