
Lecture 15: Knapsack

15 Knapsack
• Dynamic Programming

• Knapsack

• Sequence Alignment

In general, a dynamic programming algorithm works by choosing a set of subproblems and relating them through
some recurrence.
To be efficient, we need:

• Only polynomially many subproblems

• The solution of a problem should be efficiently computable from the solutions of its subproblems

• We can express the solution in terms of a reurrence involving only "smaller" subproblems

15.1 Knapsack
We are given n items, where item i has a positive integer weight wi (for all i ∈ {1, · · · , n}).

We are given an upper bound W on the total weight we can fit into our knapsack.

Our goal is to find a subset S ⊆ {1, · · · , n} that maximizes the total weight
∑

i∈S wi subject to the con-
straint that

∑
i∈S wi ≤ W .

To give a dynamic programming algorithm, what should the subproblems be?

The natural approach would be to just consider items {1, · · · , j}.
Let opt(j) = optimal solution on items {1, · · · , j}.
Starting from the last item: is item n part of the optimal solution?

• If not, then opt(n) = opt(n− 1).

• If yes, then opt(n) = wn + opt(n− 1) with a lower weight limit W − wn.

Our subproblems are not rich enough to express this idea of a different weight limit!

Instead, let opt(j, w) be the optimal solutions on items {1, · · · , j} with weight limit w.

Our goal is to compute opt(n,W).

We ask if item j is part of the optimal solution on items {1, · · · , j} with total weight ≤ w?

• If not, then opt(j, w) = opt(j − 1, w)

• If yes, then opt(j, w) = wj + opt(j − 1, w − wj).

We set the base case here to be opt(0, w) = 0 for any w.

Recurrence:

opt(j,w) =

{
opt(j − 1, w) if wj > w

max{opt(j − 1, w), wj + opt(j − 1, w − wj)} if wj ≤ w

Knapsack (n , W) :
l e t M be an (n+1)x (W+1) array o f i n t e g e r s
l e t M[0 , w] = 0 f o r a l l w from 0 to W
fo r j=1 to n

f o r w=0 to W
i f w_j > w then

l e t M[j , w] = M[j −1, w]
e l s e

l e t M[j , w] = max{M[j −1, w] , w_j + M[j −1, w−w_j] }

1

Lecture 15: Knapsack

end i f
endfor

endfor
re turn M[n , W]

Running time: O(n ·W) since the body of the loop takes time O(1).

This algorithm is linear in n, but exponential in logW .

2

	Knapsack
	Knapsack

