
Lecture 14: Dynamic Programming, Weighted Interval Scheduling

14 Dynamic Programming, Weighted Interval Scheduling
• Dynamic Programming

• Weighted Interval Scheduling

• Knapsack

14.1 Weighted Interval Scheduling
Recall the interval scheduling problem: given intervals [si, fi] for i ∈ {1, · · · , n}, find a largest possible subset
of nonoverlapping intervals.

New twist: Interval i has a value vi ∈ R. Our goal is to find a set of nonoverlapping intervals maximizing
∑

i∈S vi.

We sort the intervals so that the finishing times are non decreasing: f1 ≤ f2 ≤ · · · ≤ fn.

We ask if the last interval part of the optimal solution? We need to consider the possibility that it is, and that
it isn’t.

• If no, then the optimal solution of the whole problem is on intervals {1, · · · , n− 1}.

• If yes, then the optimal solution is vn+ the optimal solution on {1, · · · , p(n)}
Where P (j) = max{i < j : intervals i and j are disjoint}

Let opt(j) be the optimal value on intervals {1, · · · , j}.
opt(j) = max{opt(j − 1) + vj + opt(p(j))}
opt(0) = 0.

Interval j is part of the solution if vj + opt(p(j)) ≥ opt(j − 1)

14.1.1 Recursive Algorithm

We assume that the intervals are sorted by finishing time, and that values p(j) have been precomputed in time
O(n log n).

ComputeOpt(j) :
i f j = 0 then

return 0
e l s e

re turn max{ComputeOpt(j −1) , v_j + ComputeOpt(p(j))}
end i f

ComputeOpt(n) will return the desired value.

Running time: let T (j) denote the running time of ComputeOpt(j).

T (j) = T (j − 1) + T (p(j)) +O(1)

We know that p(j) ≤ j − 1, and p(j) = j − 1 for every j in the worst case.

T (j) = 2 · T (j − 1) +O(1)

At every j we double the computation we do, so this grows exponentially with respect to j!

We can improve on this by storing the solutions of previously computed subproblems, called "Memoization".

Initially, let M [j] = ∅ for all j ∈ {1, · · · , n}.

MComputeOpt(j) :
i f j = 0 then

return 0
e l s e i f M[j] != nul l , then

return M[j]

1

Lecture 14: Dynamic Programming, Weighted Interval Scheduling

e l s e
l e t M[j] = max(MComputeOpt(j −1) , v_j + MComputeOpt(p(j)))
re turn M[j]

e nd i f

We can find the optimal solution by checking which terms achieve the max.

Lemma 14.1
The running time of MComputeOpt(n) is O(n).

Proof. The running time ofMComputeOpt(j) is O(1)+ cost of its recursive calls, so running time ofMComputeOpt(n)
is O(total number of recursive calls).

We make at most n recursive calls since there are only n values of M [j], and once we’ve completed M [j],
we never call MComputeOpt(j) again.

Alternatively, we can just compute the values M [j] interatively:

ItComputeOpt :
l e t M[0] = 0
f o r j = 1 to n do

l e t M[j] = max{M[j −1] , v_j + M[p(j)] }
endfor

2

	Dynamic Programming, Weighted Interval Scheduling
	Weighted Interval Scheduling
	Recursive Algorithm

