Lecture 14: Dynamic Programming, Weighted Interval Scheduling

14 Dynamic Programming, Weighted Interval Scheduling

e Dynamic Programming
e Weighted Interval Scheduling
e Knapsack

14.1 Weighted Interval Scheduling
Recall the interval scheduling problem: given intervals [s;, f;] for ¢ € {1,--- ,n}, find a largest possible subset
of nonoverlapping intervals.
New twist: Interval i has a value v; € R. Our goal is to find a set of nonoverlapping intervals maximizing), g v;.
We sort the intervals so that the finishing times are non decreasing: f; < fo <--- < f,.
We ask if the last interval part of the optimal solution? We need to consider the possibility that it is, and that
it isn’t.

e If no, then the optimal solution of the whole problem is on intervals {1,--- ,n —1}.

e If yes, then the optimal solution is v,+ the optimal solution on {1,---,p(n)}
Where P(j) = max{i < j : intervals ¢ and j are disjoint}

Let opt(j) be the optimal value on intervals {1,--- ,j}.

opt(j) = max{opt(j — 1) +v; + opt(p(j))}
opt(0) = 0.

Interval j is part of the solution if v; + opt(p(j)) > opt(j — 1)

14.1.1 Recursive Algorithm

We assume that the intervals are sorted by finishing time, and that values p(j) have been precomputed in time
O(nlogn).

ComputeOpt (j):
if j = 0 then
return 0
else
return max{ComputeOpt(j—1), v_j + ComputeOpt(p(j))}
endif

ComputeOpt(n) will return the desired value.

Running time: let T'(j) denote the running time of ComputeOpt(5).

T(G)=T3G—-1)+T(p() +01)
We know that p(j) < j—1, and p(j) = j — 1 for every j in the worst case.
T(G)=2-T(G-1)+0(@1)

At every j we double the computation we do, so this grows exponentially with respect to j!
We can improve on this by storing the solutions of previously computed subproblems, called "Memoization".

Initially, let M[j] = @ for all j € {1,--- ,n}.

MComputeOpt (]):
if j = 0 then
return 0
elseif M[j] != null, then
return M|]|

Lecture 14: Dynamic Programming, Weighted Interval Scheduling

else
let M[j] = max(MComputeOpt(j—1), v_j + MComputeOpt(p(j)))
return M[j]

endif

We can find the optimal solution by checking which terms achieve the max.

Lemma 14.1
The running time of MComputeOpt(n) is O(n).

Proof. The running time of MComputeOpt(5) is O(1)+ cost of its recursive calls, so running time of MComputeOpt(n)
is O(total number of recursive calls).

We make at most n recursive calls since there are only n values of M[j], and once we’ve completed M][j],
we never call MComputeOpt(j) again. O

Alternatively, we can just compute the values M[j] interatively:

ItComputeOpt :
let M[O] =0
for j =1 to n do
let M[j] — max{M[j 1], v_j + M[p(j)]}
endfor

	Dynamic Programming, Weighted Interval Scheduling
	Weighted Interval Scheduling
	Recursive Algorithm

