14 Dynamic Programming, Weighted Interval Scheduling

- Dynamic Programming
- Weighted Interval Scheduling
- Knapsack

14.1 Weighted Interval Scheduling

Recall the interval scheduling problem: given intervals $\left[s_{i}, f_{i}\right]$ for $i \in\{1, \cdots, n\}$, find a largest possible subset of nonoverlapping intervals.

New twist: Interval i has a value $v_{i} \in \mathbb{R}$. Our goal is to find a set of nonoverlapping intervals maximizing $\sum_{i \in S} v_{i}$.
We sort the intervals so that the finishing times are non decreasing: $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.
We ask if the last interval part of the optimal solution? We need to consider the possibility that it is, and that it isn't.

- If no, then the optimal solution of the whole problem is on intervals $\{1, \cdots, n-1\}$.
- If yes, then the optimal solution is $v_{n}+$ the optimal solution on $\{1, \cdots, p(n)\}$ Where $P(j)=\max \{i<j$: intervals i and j are disjoint $\}$
Let $\operatorname{opt}(j)$ be the optimal value on intervals $\{1, \cdots, j\}$.
$\operatorname{opt}(j)=\max \left\{\operatorname{opt}(j-1)+v_{j}+\operatorname{opt}(p(j))\right\}$
$\operatorname{opt}(0)=0$.
Interval j is part of the solution if $v_{j}+\operatorname{opt}(p(j)) \geq \operatorname{opt}(j-1)$

14.1.1 Recursive Algorithm

We assume that the intervals are sorted by finishing time, and that values $p(j)$ have been precomputed in time $O(n \log n)$.

ComputeOpt (j) :
if $\mathrm{j}=0$ then
return 0
else
return $\max \left\{\operatorname{ComputeOpt}(\mathrm{j}-1), \mathrm{v} _\mathrm{j}+\operatorname{ComputeOpt}(\mathrm{p}(\mathrm{j}))\right\}$
endif
ComputeOpt (n) will return the desired value.
Running time: let $T(j)$ denote the running time of ComputeOpt (j).

$$
T(j)=T(j-1)+T(p(j))+O(1)
$$

We know that $p(j) \leq j-1$, and $p(j)=j-1$ for every j in the worst case.

$$
T(j)=2 \cdot T(j-1)+O(1)
$$

At every j we double the computation we do, so this grows exponentially with respect to j !
We can improve on this by storing the solutions of previously computed subproblems, called "Memoization".
Initially, let $M[j]=\varnothing$ for all $j \in\{1, \cdots, n\}$.
MComputeOpt (j) :
if $j=0$ then return 0
elseif $\mathrm{M}[\mathrm{j}]$!= null, then return $\mathrm{M}[\mathrm{j}]$

```
else
    let M[j] = max(MComputeOpt(j - 1), v_j + MComputeOpt(p(j)))
    return M[j]
endif
```

We can find the optimal solution by checking which terms achieve the max.
Lemma 14.1
The running time of $\mathrm{MComputeOpt}(n)$ is $O(n)$.

Proof. The running time of MComputeOpt (j) is $O(1)+$ cost of its recursive calls, so running time of MComputeOpt (n) is O (total number of recursive calls).

We make at most n recursive calls since there are only n values of $M[j]$, and once we've completed $M[j]$, we never call MComputeOpt (j) again.

Alternatively, we can just compute the values $M[j]$ interatively:
ItComputeOpt:
let $\mathrm{M}[0]=0$
for $\mathrm{j}=1$ to n do
let $M[j]=\max \left\{M[j-1], \quad v _j+M[p(j)]\right\}$
endfor

