Lecture 12: Fast Fourier Transform

12 Fast Fourier Transform

e Divide and Conquer: FFT

e Next: Dynamic Programming
12.1 Fast Fourier Transform

c(z) = a(x) - b(z)

n—1 n—1
= ajxj (Z bkmk>
j=0 k=0
n—1
= a;bpri™ substitute I = j + k
4,k=0
2n—2 l
= Z ajbl,J .Tl
1=0 \j=0

Main Idea: use polynomial interpolation.
A degree d polynomial is uniquely specified by its values at any d + 1 distinct points.

Strategy:
1. Evaluate a(z) and b(x) on 2n — 1 points.
2. Evaluate ¢(z) on those points.

3. Reconstruct the coefficients from these data.

For (1), we compute O(n) things, each of which takes O(n) time to evaluate individually.

Consider evaluating a polynomial of degree d — 1 at d points g, 1, - ,Tq4—1-

d—1
a(r;) = ag + a1z + -+ + ag-17j

Assume that d is even.

Let

2 4_1
Qeven (T) = ag + a2z + agx” + - - + ag_222

d_
Goda(z) = a1 + azw + asz® + -+ + ag_1x2 "

Then
a(z) = aeven(ch) 4+ - aodd(mQ)

The natural choice for these points are the dth roots of unity

Fn2

7y

12
_K ﬂo?
T = w) where wy = €27/
2 _ 27 _ 27 modd __
T; =wy = wy = T2j mod d
Note that

6271'1 =1

Lecture 12: Fast Fourier Transform

If T(d) is the cost of evaluating a(z) at z; for j € {0,1,--- ,d — 1}, then we have T'(d) = 2T'(d/2) + O(d) =
T(d) = O(dlogd)

For (3), consider how the coefficients of a polynomial relate to its evaluations at w9, w}, - - - ,wg_l.
_ 2 d—1
a(x) = ag + a1 + asx” + - + ag_1x
ag
ai
:[1 x zz - xdil] a
ad—1
So,
a(w?) 1wy (wg)? (Wt ag
d 1 1\2 1\d—1
alwy) | |1l e, R e
a(wi) | = L wy (wg) (wz)*™ as
0 :
awi [et @ e @it Lean

Where the middle matrix is called the discrete fourier transform.

F is a "unitary matrix": its inverse is easy to compute.
We have

‘We want

VAF 'z =F 'Fy=y
Because F' is unitary, F~' is ust like F, but with w replaced by %

	Fast Fourier Transform
	Fast Fourier Transform

