Lecture 12: Fast Fourier Transform

12 Fast Fourier Transform

e Divide and Conquer: FFT

e Next: Dynamic Programming
12.1 Fast Fourier Transform
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Main Idea: use polynomial interpolation.
A degree d polynomial is uniquely specified by its values at any d + 1 distinct points.

Strategy:
1. Evaluate a(z) and b(x) on 2n — 1 points.
2. Evaluate ¢(z) on those points.

3. Reconstruct the coefficients from these data.

For (1), we compute O(n) things, each of which takes O(n) time to evaluate individually.

Consider evaluating a polynomial of degree d — 1 at d points g, 1, - ,Tq4—1-
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Assume that d is even.

Let
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Then
a(z) = aeven(ch) 4+ - aodd(mQ)

The natural choice for these points are the dth roots of unity
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If T(d) is the cost of evaluating a(z) at z; for j € {0,1,--- ,d — 1}, then we have T'(d) = 2T'(d/2) + O(d) =
T(d) = O(dlogd)

For (3), consider how the coefficients of a polynomial relate to its evaluations at w9, w}, - - - ,wg_l.
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Where the middle matrix is called the discrete fourier transform.

F is a "unitary matrix": its inverse is easy to compute.
We have

‘We want

VAF 'z =F 'Fy=y
Because F' is unitary, F~' is ust like F, but with w replaced by %
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