11 Closest Points, Polynomial Multiplication/FFT

- Divide and conquer
- Closest points
- Fast Fourier transform

11.1 Closest Points

In one dimension, the closest points problem can be solved in $O(n \log n)$ by sorting all points and scanning linearly.

To simplify the problem, we assume that no two points share x or y coordinates.
The main idea here is to recursively subdivide the points into left and right halves (by sorting with respect to the x coordinates), solve the closest pair problem on each half, then check if there is a closer pair with one point on the left and one point on the right subdivision.

As we recurse, we maintain lists sorted by x and y coordinates.
Notation: Input points are $P=\left\{p_{1}, \cdots, p_{n}\right\}$, where $p_{i}=\left(x_{i}, y_{i}\right)$.
Let Q be the points in P with the first $\lceil n / 2\rceil x$ coordinates.
Let R be the points in P with the last $\lfloor n / 2\rfloor x$ coordinates.
We recurisvely find the closest points in Q (call them $\left.q_{0}^{*}, q_{1}^{*}\right)$, and $R\left(\right.$ call them $\left.r_{0}^{*}, r_{1}^{*}\right)$
Let $\delta=\min \left\{\operatorname{dist}\left(q_{0}^{*}, q_{1}^{*}\right), \operatorname{dist}\left(r_{0}^{*}, r_{1}^{*}\right)\right\}$.
Let x^{*} be the largest x coordinate of a point in Q
Let L be the line $x=x^{*}$.
Lemma 11.1
If $\exists q \in Q$ and $r \in R$ with $\operatorname{dist}(q, r)<\delta$, then both q and r are within δ of L.

With this information, we can restrict our attention to a "strip" centered on L with width 2δ. Call the strip S.

Lemma 11.2
If two points in S have distance less than δ, then they are within 15 positions of each other in the list of points sorted by y coordinates.

Proof. Divide S into squares of side length $\frac{\sigma}{2}$ (arranged in a 4×4 grid).
No two points can be in the same square. If they were, they would have distance at most $\sqrt{2} \frac{\delta}{2}=\frac{\delta}{\sqrt{2}}<\delta$, but δ was the distance between the closest pair of points solely on the left or right, so this can not occur.

Suppose two points in S are 16 or more positions apart in the list sorted by y coordinate.
Then they must differ by at least 3 rows of boxes, so they have distance at least $3 \cdot \frac{\delta}{2}>\delta$.
Running time: $T(n)=2 T(n / 2)+O(n) \Longrightarrow T(n)=O(n \log n)$.

11.2 Polynomial Multiplication and the FFT

Problem: Given polynomials $a(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ and $b(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n-1} x^{n-1}$ We wish to compute the product $c(x)=a(x) b(x)$.

